• No results found

Hydrogen peroxide as an intermediate in electrocatalytic reduction of oxygen. A new method for the determination of rate constants

N/A
N/A
Protected

Academic year: 2021

Share "Hydrogen peroxide as an intermediate in electrocatalytic reduction of oxygen. A new method for the determination of rate constants"

Copied!
5
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Hydrogen peroxide as an intermediate in electrocatalytic

reduction of oxygen. A new method for the determination of

rate constants

Citation for published version (APA):

Brink, van den, F. T. B. J., Barendrecht, E., & Visscher, W. (1980). Hydrogen peroxide as an intermediate in

electrocatalytic reduction of oxygen. A new method for the determination of rate constants. Journal of the

Electrochemical Society, 127(9), 2003-2006. https://doi.org/10.1149/1.2130053

DOI:

10.1149/1.2130053

Document status and date:

Published: 01/01/1980

Document Version:

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be

important differences between the submitted version and the official published version of record. People

interested in the research are advised to contact the author for the final version of the publication, or visit the

DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page

numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

(2)

Vol. 127,

No.

9

I N F L U E N C E O F W A T E R 2003 R E F E R E N C E S 1. D. G. L o v e r i n g a n d R. M. O b l a t h in "Ionic Liquids," D. G. L o v e r i n g a n d D. I n m a n , Editors, P l e n u m Press, N e w Y o r k (1981). 2. D. G. Lovering, R. M. Oblath, a n d A. K. T u r n e r ,

J. Chem. Soc.

Chem. Commun., 673 (1976).

3. H. S. Swofford a n d H. A. L a i t i n e n ,

This Journal,

110, 814 (1962).

4. T. E. Geckle, Thesis, Penn. S t a t e U n i v e r s i t y (1964) ; U.S.A.E.C., TID21511 (1964).

5. M. Peleg, J. Phys. Chem., 71, 4553 (1967).

6. G. J. Hills a n d P. D. P o w e r ,

J. Polarogr. Soc.,

13,

71 (1967).

7. P. G. Z a m b o n i n , V. L. C a r d e t t a , a n d G. Signorile,

J. Eleetroanal. Chem. Interracial Electrochem.,

28, 237 (1970) ; Anal. Chem., 43, 1571 (1971). 8. J. J o r d a n ,

J. Electroanal. Chem. Interracial Electro-

chem.,

29, 127 (1971). 9. A. E s p i n o l a a n d J. J o r d a n , in " P r o c e e d i n g s A.C.S. S y m p o s i u m , " S a n Francisco, A u g u s t (1976). 10. J. E. B. R a n d l e s a n d W. White,

Z. Electrochem.,

59, 666 (1955). 11. V. Sh. P a l a n k e r , A. M. S k u n d i n , a n d V. S. B a g o t - skii,

Electrokhim., 2, 640 (1966).

12. D. G. L o v e r i n g , Thesis, C i t y U n i v e r s i t y (1969); E x t e n d e d A b s t r a c t s , p. 340, 23rd M e e t i n g I.S.E., S t o c k h o l m (1972).

13. D. G. Lovering,

Collect. Czech. Chem. Commun.,

37, 3697 (1972).

14. J. P. F r a m e , E. Rhodes, a n d A. R. U b b e l o h d e ,

Trans. Faraday Soc., 57, 1075 (1961).

15. J. B r a u n s t e i n ,

Inorg. Chim. Acta Rev., 2, 19 (1968).

16. T. B. T r i p p a n d J. B r a u n s t e i n ,

J. Phys. Chem.,

73,

1984 (1969).

17. P. G. Z a m b o n i n ,

J. Electroanal. Chem. Interracial

Electrochem., 24, 365 (1970) et seq.

18. D. I n m a n , D. G. L o v e r i n g , a n d R. N a r a y a n ,

Trans.

Faraday Soc.,

63, 3017 (1967).

19. J. D a n d o y a n d L. Gierst, J.

Electroanal. Chem., 2,

116 (1961).

20. C. J. Liu, J. Hasson, a n d G. P e d r o Smith,

Inorg.

Chem.,

7, 2244 (1968).

21. S. V. V o l k o v a n d N. I. B u r y a k ,

Zh. Neorg. Khim.,

17, 1045 (1972).

22. T. R. Griffiths a n d P. J. Potts,

Inorg. Chem.,

14,

1039 (1975).

23. M. S t e i n b e r g a n d N. N a c h t r i e b , J.

Am. Chem. Soc.,

72, 3558 (1950).

24. R. M. Oblath, Thesis, C.N.A.A. (R.M.C.S., S h r i v e n - h a m ) (1978).

25. G. C. B a r k e t a n d R. L. F a i r c l o t h , A.E.R.E. R e p o r t C / R 2032 (1956).

20. E. P. P a r r y a n d R. A. Osteryoung,

Anal. Chem.,

40, 65 (1968).

27. G. C. B a r k e r and A. W. G a r d e n e r ,

Z. Anal. Chem.,

173, 79 (1960).

28. H. M a t s u d a a n d Y. A y a b e ,

Z. Electrochem.,

59,

494 (1955).

29. R. S. Nicholson a n d I. Shain,

Anal. Chem.,

36, 706 (1964).

30. Z. Galus, " F u n d a m e n t a l s of E l e c t r o c h e m i c a l A n a l - ysis," Ellis Horwood, C h i c h e s t e r (1976).

31. E. E r i k s r u d ,

J. Electroanal.

Chem. Interracial

Electrochem., 90, 347 (1978).

32. L. R. McCoy, H. B. Mark. Jr., a n d L. Gierst, J.

Phys. Chem.,

72, 4637 (1968), et seq.

33. B. O. F i e l d and C. J. H a r d y ,

Q. Rev.,

18, 361 (1964) ; C. C. Addison,

Q. Rev., 25, 289 (1971).

34. See D. G. Lovering,

Collect. Czech. Chem. Commun.,

38, 1719 (1973), for discussion and f u r t h e r r e f - erences.

35. R. D. S h a n n o n and C. T. P r e w i t t ,

Acta Crystallogr.

Sect. B, 25, 925 (1969) ; ibid.,

26, 1076 (1970).

Hydrogen Peroxide as an Intermediate in

Electrocatalytic Reduction of Oxygen.

A New Method for the Determination of

Rate Constants

F. van den Brink, E. Barendrecht,* and

W ,

Visscher

Laboratory for Electrochemistry, University of Technology, 5600 MB Eindhoven, The Netherlands

A B S T R A C T On m o s t e l e c t r o c a t a l y s t s H202 is an i n t e r m e d i a t e in the e l e c t r o r e d u c t i o n of o x y g e n . H202 c a n d e c o m p o s e e i t h e r c h e m i c a l l y o r e l e c t r o c h e m i c a l l y a n d in assessing t h e p e r f o r m a n c e of t h e e l e c t r o c a t a l y s t i t is c r u c i a l to d i s t i n g u i s h b e - t w e e n t h e s e r e a c t i o n paths. A s i m p l e m e t h o d is p r o p o s e d to d e t e r m i n e w h e t h e r o r n o t t h e c h e m i c a l p a t h is followed. F o r t h e e l e c t r o c h e m i c a l r e d u c t i o n of o x y g e n a g e n - e r a l s c h e m e of r e a c t i o n s can be g i v e n as in Fig. 1. W h e t h e r t h e r e d u c t i o n of o x y g e n to w a t e r w i l l f o l l o w t h e d i r e c t p a t h 1 o r t h e consecutive p a t h 2-3, or b o t h t h e s e p a t h s i n p a r a l l e l , is d e t e r m i n e d b y the e l e c t r o - c a t a l y t i c p r o p e r t i e s of the e l e c t r o d e w h i c h a r e also c r i t i c a l for t h e f u r t h e r r e a c t i o n of H20~: e l e c t r o c h e m - i c a l r e d u c t i o n ( r e a c t i o n 3) a n d / o r c h e m i c a l d e c o m - p o s i t i o n ( r e a c t i o n 4). W i t h t h e i n t r o d u c t i o n of t h e r o t a t i n g r i n g - d i s k e l e c t r o d e t e c h n i q u e i t b e c a m e possible to d i s t i n g u i s h b e t w e e n t h e c o n s e c u t i v e a n d p a r a l l e l p a t h w a y s (1-4). Here, t h e d i s k c u r r e n t is m e a s u r e d a t v a r i o u s p o t e n - t i a l s a n d r o t a t i o n frequencies, w h i l e s i m u l t a n e o u s l y t h e r i n g c u r r e n t is m e a s u r e d at a p o t e n t i a l at w h i c h

* Electrochemical Society Active Member,

Key words: electrocatalysts, reduction, decomposition.

h y d r o g e n p e r o x i d e is o x i d i z e d q u a n t i t a t i v e l y . S e v e r a l m e t h o d s h a v e b e e n p r o p o s e d to a n a l y z e t h e d a t a o b t a i n e d f r o m t h e s e e x p e r i m e n t s ; t h e s e m e t h o d s h a v e b e e n r e v i e w e d b y P l e s k o v a n d F i l i n o v s k i i (5), w h i l e W r o b l o w a (6) has a d d e d a g e n e r a l c r i t e r i o n for d i s - t i n g u i s h i n g b e t w e e n the p a r a l l e l a n d consecutive p a t h - way. These a n a l y s e s s h o w that, in p r i n c i p l e , o n l y f o u r ( c o m b i n a t i o n s ) of t h e five r a t e c o n s t a n t s in t h e g e n - e r a l s c h e m e can be o b t a i n e d . A p r o b l e m w h i c h r e m a i n s to b e s o l v e d is t h a t of t h e f a t e of t h e h y d r o g e n p e r o x i d e , p r o d u c e d b y r e a c - tor 2 i n Fig. 1 : H 2 0 2 c a n b e e i t h e r r e d u c e d e l e c t r o - c h e m i c a l l y ( r e a c t i o n 3) o r c h e m i c a l l y d e c o m p o s e d ( r e a c t i o n 4). Moreover, t h e s o l u t i o n of this p r o b l e m is of v i t a l i m p o r t a n c e in t h e e v a l u a t i o n of t h e p e r f o r m - ance of e l e c t r o c a t a l y s t s for t h e o x y g e n electrode, since r e a c t i o n 4 i n v o l v e s no n e t e l e c t r o n t r a n s f e r and is

(3)

2004 J.

EIectrochem. Soc.:

E L E C T R O C H E M I C A L S C I E N C E A N D T E C H N O L O G Y

September 1980

k

0 - _ . .

"- H O

= H

2

b

2 2

Fig. 1. Scheme of reactions for reduction of oxygen

electrochemically w h o l l y u n p r o d u c t i v e . I n this p a p e r we will p r e s e n t a simple method to d e t e r m i n e the rate constant of reaction 4, so that, i n pJ:inciple, it becomes possibIe to calculate all five i n d i v i d u a l rate constants of Fig. 1.

Theory

I n the r i n g - d i s k electrode (RRDE) e x p e r i m e n t , r e - f e r r e d to in the i n t r o d u c t i o n , sets of disk c u r r e n t s (ID) a n d l i m i t i n g r i n g c u r r e n t s (IR) are obtained as functions of rotation f r e q u e n c y (~) a n d disk potential, ED. These data are a n a l y z e d by p l o t t i n g at c o n s t a n t E D according to (5)

--NolD/IR -- A + B / A / ~

[1] a n d

- - N o (ID,limH20 - - I D ) / I R = C -~

Dxr

[2] w h e r e ID,limH20 is the l i m i t i n g c u r r e n t at the disk for the r e d u c t i o n of o x y g e n to w a t e r a n d No is the RRDE's collection efficiency (7). A, B, C, a n d D are functions of the five rate constants, from which kl, k2 f, 2k2 b --}- k4,

a n d 2k3 -~ k4 can be o b t a i n e d (5).

We wish to point out that the value of k4 can be f o u n d i n m a n y practical cases b y m e a s u r i n g r i n g c u r r e n t s i n a solution c o n t a i n i n g only H 2 0 2 a n d no 02, while the disk c u r r e n t is kept zero.

Relations b e t w e e n c u r r e n t s a n d r o t a t i o n frequencies i n H_~O2 c o n t a i n i n g solutions have been derived b y Bagotskii (1). F r o m his e q u a t i o n s the c o m b i n a t i o n s 2ku b + k~, 2k3 + k4, a n d k2 f -- k3 can be obtained. A f u r t h e r extension of this method was given b y Tarasevich and R a d y u s h k i n a (8) who applied Bagot- skii's equations u n d e r the condition that ID = 0. They, again, f o u n d kl, k2 f, 2k2 b ~- k4 ( d e s c r i b i n g the rate with which H202 gives O2), a n d 2k3 + k~ (describing the rate with which H.~O2 gives HoO). We will show t h a t they lost v a l u a b l e i n f o r m a t i o n ,

viz.,

that o b t a i n e d from the value o.f the disk's o p e n - c i r c u i t potential, b y s u b s t i t u t i n g the zero c u r r e n t condition (ID = 0) only ~n Bagotskii's r e s u l t i n g equations (1).

I n a solution c o n t a i n i n g h y d r o g e n peroxide, b u t no oxygen, the h y d r o g e n peroxide will react electro- chemically (reactions 2 a n d 3) a n d chemically (reac- tion 4), giving o x y g e n a n d / o r water; o x y g e n m a y react f u r t h e r (reactions 1 a n d 2). The q u a n t i t i e s of f o r m e d o x y g e n a n d of decomposed h y d r o g e n peroxide can be d e t e r m i n e d b y m e a s u r i n g the anodic and cathodic l i m i t i n g c u r r e n t s on the r i n g electrode. If, moreover, the disk c u r r e n t is zero, the n e t a m o u n t of o x y g e n formed b y the electrochemical reaction is k n o w n if the ratio of the rates of p r o d u c t i o n a n d of c o n s u m p t i o n of O2 by the electrochemical reactions,

i.e.,

k2 b --

k3/2kz ~-

k2 f is k n o w n at the disk's r e s t - potential. This m e a n s that the a m o u n t of o x y g e n formed b y reaction 4 can be found,

i.e.,

that the v a l u e of k4 can be d e t e r m i n e d .

Thus, on the disk electrode

k3

H202 -}- 2H + -}- 2 e - --> 2H20 w i t h I3

k2t H2Of~2bOf-- -]- 2H + -{- 2 e - w i t h I2 with I1 -F I2 + I3 k 1 " - ID = 0 O2 -{- 4H+ + 4 e - -~ 2H20 w i t h Ii k4 H202 ~ 1~ Oe § HfO

The a s s u m p t i o n s are t h a t reaction 4 is p o t e n t i a l i n d e p e n d e n t , t h a t the p e r t i n e n t reactions are first order i n O2 or i n H202, a n d t h a t adsorption to a n d desorption f r o m the electrocatalyst of 02 a n d H202 are fast.

On the r i n g electrode the anodic l i m i t i n g c u r r e n t

iS IR,lim a f o r the r e a c t i o n

H20~-> 02 ~ 2H + -{- 2 e -

a n d IR,lim c the cathodic l i m i t i n g c u r r e n t for the reac- tions

H202 + 2H + + 2 e - --> 2H20 a n d

02 +

4H + -{- 4 e - --> 2H~O

At the disk we have the mass balances, for h y d r o g e n peroxide-

72xr s - - C2 ~ = (k2,r b -~- k3,r + k 4 ) c 2 ~ - - k2,rfCl ~ [3]

a n d for o x y g e n

71~V/WCl ~ = ( k f , r b -~- 1/2 k 4 ) c 2 ~ - - ( k l , r - ~ k f , r f ) c l ~ [4]

Because of the zero c u r r e n t condition

ID

- - " = (k2,r b -- k3,r)C2 ~ -- (2kl,r + k2,rf)cl ~ = 0 [5] 2FA

where the c's are the c o n c e n t r a t i o n s of O2 (subscript 1) a n d of H202 (subscript 2). The superscripts 0 a n d s on the c's denote the electrode surface a n d the b u l k of the solution, respectively ,while a subscript r is attached to kz, k2 f, k2 b, a n d k~ because the disk elec- trode is at its rest potential. F u r t h e r , 7~/~- = 0.62D 2/~ ~-~/6~v/~ is the rate constant for diffusion a n d A the disk area.

At the ring we have the l i m i t i n g c u r r e n t s cathodic

~2/3

IR,lim c _ 4 7 1 ~ C l O - - 2k4c2 o -~-

NoAF

NoAF

. ID,limH202

[6]

w h e r e IR,lim c k4 ( K fl2/3 '~ __

2NoAFc2 s

1 ~- K

- 1 ~ - ~ ~- -~o J

72V~ [8] a n d --IR,lim a k4 fl'2/3 __ 2NoAFc - z - 7 2 W 27z k2,r b - - k3,r K = - - 72 2 k l , r -~- k2,r f

[9]

anodic

/R, lima

~2/3 - - - - 2k4c2 ~ -~ - - ID,limH202 [7]

NoAF

NoAF

w h e r e ID,limH202 is the absolute v a l u e of the l i m i t i n g c u r r e n t at the disk for the oxidation of H202 to 02 a n d ~2/3 is a geometrical factor, defining the shielding factor (1 -- No~ -2/3) of the RRDE (7).

E l i m i n a t i o n of cz o a n d c2 o b e t w e e n the sets of Eq. [3], [4], a n d [6], a n d [3], [4], a n d [7], respectively, together w i t h the condition [5] gives

(4)

Vol. 127, No. 9 E L E C T R O C A T A L Y T I C R E D U C T I O N The pseudo c o n s t a n t k can be o b t a i n e d b y e x t r a p o l a -

t i o n of the values for the k's f o u n d with Eq. [1] a n d [2] to the rest p o t e n t i a l at each r o t a t i o n frequency.

If we m a y assume t h a t the rest p o t e n t i a l w i l l n o t v a r y s t r o n g l y w i t h the RRDE's r o t a t i o n f r e q u e n c y , K will be a constant. T h e n the plots of the l i m i t i n g r i n g c u r r e n t s vs. V"J will give straight lines. Two l i m i t i n g cases can be considered (Fig. 2). F i r s t K < < 1, i.e., H202 is, electrochemically, m u c h less reactive t h a n 02 at the disk electrode. Therefore the anodic a n d cathodic l i m i t i n g r i n g c u r r e n t s become equal, while r e a c t i o n 4 is responsible for e x t r a shielding of the r i n g c u r r e n t b y the disk electrode. The second case K > > 1, i.e., H202 is electrochemically m o r e reactive. 02 f o r m e d o n the disk diffuses away, t h e r e b y i n c r e a s - i n g the cathodic l i m i t i n g r i n g current. Now the i n - fluence of r e a c t i o n 4 is m u c h less t h a n i n the first case, because of the low H202 c o n c e n t r a t i o n n e a r the disk surface. I n Fig. 2, schematic diagrams are g i v e n for these two cases.

I n general, b y p l o t t i n g fR,lim a VS. %v]~, or, m o r e p r e - cisely, (1 -5 K)IR.t~m a vs. (1 -5 K ) V rJ (Eq. [9]), c2 s c a n be found. T h e n k4 c a n be calculated at each v a l u e of ~ f r o m

k 4 . ( 1 - 5 K ) [ I R , l i m O

+(K---+-~,)+I'21~"

]

2NoAFC + 1 + . , . + . o -, [10a]

#+]3 I

--IR'uma -5 --~-o "y~v~-J

[lOb]

-- (1

-5

K ) 2NoAFc2 s

The results c a n be a v e r a g e d to give a final v a l u e of k4. A l t e r n a t i v e l y , k4 can be d e t e r m i n e d from the i n t e r - cepts of (1 -5 K ) IR.limC/2NoAFc2 s a n d - - ( 1 -5 K) IR.uma/2NoAFc2 s vs. (1 -5 K ) ? 2 ~ . The r e s u l t i n g v a l u e of k4 is t h e n s u b t r a c t e d from 2k2 h -5 k4 a n d 2k3 -5 k4, o b t a i n e d f r o m Eq. [1] a n d [2], to give the separate values for all five rate constants at each p o t e n t i a l for which r i n g a n d disk c u r r e n t s are available.

E x p e r i m e n t a l

As a n example, a n e x p e r i m e n t according to the l i n e of r e a s o n i n g described above was carried out, u s i n g a n RRDE with a n A u disk a n d a P t r i n g in 1M K O H at 298~ The c o n s t r u c t i o n of the RRDE was as described before (9). Its d i m e n s i o n s w e r e such t h a t A ---- 51.5 X 10 -6 m 2, No ~ 0.1437, a n d fl ---- 0.1515 (as calculated f r o m the radii rl0 : 4.047 ram, r20 ---- 4.260 mm, a n d r30 =- 4.437 m m ) . A s t a n d a r d electrochemical cell was used, w i t h a r e v e r s i b l e h y d r o g e n electrode (RHE) as reference a n d a p l a t i n u m wire as c o u n t e r - electrode. The P t r i n g was slightly p l a t i n i z e d (5 •

10i'11R,tim t / m . s -1 cathodic +3.0 2 2 9 + C + 2.0 / ., '4 . 4 / o

,r

2

+1.o

/ ' / ~ /

/y+"

o/e

fiR,tim I

Q

/ /

a,c

IzR,

ti,..l

2005 l I I 0 + 0.5 + 1.0 + 1.5

~. 10/*

~I'HzozV-~/m.s'I

Fig. 3. Limiting ring currents vs. ~ / ~ ; for an Au/Pt-RRDE in 1N

KOH at 298~ plotted according to Eq. [8] and [9]. a ~ anodic,

c ~ cathodic.

10-6 m o l e . m - S ) . The m e a s u r e m e n t s were c a r r i e d out u s i n g a Tacussel bipotentiostat, Type BIPAD.

The K O H solution ( p r e p a r e d w i t h p.a. q u a l i t y K O H a n d d o u b l y distilled w a t e r ) was purified b y preelec- trolysis, made o x y g e n - f r e e , a n d kept i n A r a t m o - sphere. H y d r o g e n peroxide was added 1 a n d anodic a n d cathodic l i m i t i n g c u r r e n t s at the r i n g were m e a - s u r e d w h i l e the disk c u r r e n t was zero. To avoid poisoning of the r i n g b y the stabilizer from the H202 solution used, the c u r r e n t s were m e a s u r e d b y cyclic v o l t a m m e t r y w i t h scan rates of 100-500 m V . s e c -1. The rest p o t e n t i a l at the disk was m e a s u r e d to be 889 m V vs. a r e v e r s i b l e h y d r o g e n electrode i n the same solution a n d was i n d e p e n d e n t of the r o t a t i o n frequency. Therefore it was possible to o b t a i n the

H 2 0 2 c o n c e n t r a t i o n from a IR,lim a VS. ~ - p l o t . The

slope of this plot gave c2 s _-- 5.3 mM, which v a l u e was verified b y t i t r a t i o n w i t h KMnO4. The results, p l o t t e d as IR,lim/2NoAFc2 s vs. ~ 2 ~ , are given i n Fig. 3. The

z B r o c a c e s 30% v / w , P h . E u x .

C

|

/Y

/ / /

Fig. 2. Limiting cases of Eq. [8] and [9] (arbitary units). I: K < < 1; Ih K ~ > 1; a ~ anodic; c ~ cathodic limiting current; - - - for

k4 ~ 0; for k4 --~ 0.

(5)

2006 J. Electrochem. Soc.: E L E C T R O C H E M I C A L S C I E N C E A N D T E C H N O L O G Y S e p t e m b e r I980 slope of the anodic b r a n c h is calculated to be 1.98

-~ 0.06, i n v e r y good a g r e e m e n t with the theoretical v a l u e of

-- 1.978 No

F r o m the slope of the cathodic b r a n c h (2.89 _ 0.07), the v a l u e of K ~ 10.1 can be calculated. This m e a n s that H202 is, electrochemically a p p r o x i m a t e l y five times more reactive at a gold electrode t h a n 02.

The intercepts of the anodic a n d cathodic b r a n c h e s are, respectively, --0.12 X 10 -4 msec -1 a n d --0.17 X 10 -4 msec -1. This gives, b y application of Eq. [8] a n d [9], k4 ---- (1.6 __+ 0.3) X 10 -4 msec -1. C a l c u l a t i o n according to Eq. [10] gives k4 ~- (1.6 _+ 0.2) X 10 -4 m s e c - 1.

Conclusion

As s h o w n i n the introduction, there are two nodal points i n the scheme of reactions for 02 r e d u c t i o n w h e r e a distinction is to be m a d e b e t w e e n possible paths. T h e first is w h e r e o x y g e n can give either H20 or H202. Here, RRDE e x p e r i m e n t s i n O2-containing solutions e n a b l e us to m a k e the distinction. The sec- ond is w h e r e h y d r o g e n peroxide can react either electrochemically or chemically. The m e t h o d proposed here makes it possible to d e t e r m i n e w h e t h e r or not

H202

decomposes chemically. I n those cases w h e r e it m a y be a s s u m e d that k4 does n o t depend on the disk electrode potential, it is even possible to calculate the m a g n i t u d e of k4. This a s s u m p t i o n is valid as long as the catalytic properties of the electrode surface for the decomposition of H202 do n o t change significantly w h e n the electrode p o t e n t i a l is changed from the rest potential.

F u r t h e r m o r e , the m e t h o d described here is s i m p l e r t h a n t h a t g i v e n r e c e n t l y b y A p p l e b y a n d S a v y (10). T h e y use a n RRDE w i t h a pyrolytic graphite ring, at which HeO2 is stable, to find k4. This m e a n s that they need two different RRDE's, one to find kl, k2 f,

k2 b,

a n d k3 i n o x y g e n - c o n t a i n i n g solutions a n d a n o t h e r one for use in solutions c o n t a i n i n g H2Oe to find k4.

Acknowledgment

This work has b e e n carried out w i t h financial s u p - port from the Nether]ands O r g a n i z a t i o n for the A d - v a n c e m e n t of P u r e Research (ZWO).

M a n u s c r i p t received Nov. 7, 1979.

A n y discussion of this paper will a p p e a r in a Dis- cussion Section to be p u b l i s h e d in the J u n e 1981 JOURNAL. All discussions for the J u n e 1981 Discussion Section should be s u b m i t t e d b y Feb. 1, 1981.

Publication costs of this article were assisted by the University of Technology.

L I S T OF SYMBOLS A disk area ( m ~)

co c o n c e n t r a t i o n n e a r disk surface (mole m - a : m M )

c s c o n c e n t r a t i o n i n solution (mole m -3 ~_ mM) D diffusion coefficient ( m 2 sec - 1 )

ED disk p o t e n t i a l (V) F F a r a d a y c o n s t a n t ID disk c u r r e n t (A)

ID,limH20

l i m i t i n g disk c u r r e n t for reaction 02 --> H20 (A)

ID,limH202

l i m i t i n g disk c u r r e n t for reaction

H202 --> 02

or H202 --> H20 (A) Ir~ r i n g c u r r e n t

irR.lim l i m i t i n g c u r r e n t (A)

k reaction rate c o n s t a n t (see Fig. 1) (msec - i ) K pseudo constant, defined in f o r m u l a [9] No collection efficiency of RRDE

geometric factor of RRDE 1~ 0.62 D2/3~ -1/6 (msec-V2) v k i n e m a t i c viscosity (m 2 sec -1) a n g u l a r r o t a t i o n f r e q u e n c y of RRDE (sec - 1 ) Superscripts a anodic c cathodic Subscripts 1 02 2 H202 r refers to rest p o t e n t i a l REFERENCES

1. V. S. Bagotskii et al., Soy. J. Electrochem., 4, 1129 (1968); ibid., 5, 1158 (1969).

2. A. Damjanovic, M. A. Genshaw, a n d J. O'M Bockris, J. Chem. Phys., 45, 4057 (1966).

3. J. D. E. McIntyre, J. Phys. Chem., 73, 411 (1969). 4. M. R. Tarasevich, Soy. J. Electrochem., 4, 182

(1967) ; ibid., 6, 1468 (1970).

5. Yu. V. P l e s k o v a n d V. Yu. Filinovskii, "The R o t a t - i n g Disc Electrode," C o n s u l t a n t s Bureau, N e w

Y o r k / L o n d o n (1976).

6. H. S. Wroblowa, Y e n - C h i - P a n , a n d G. R a z u m n e y , J. Electroanal. Chem. Inter]acial Electrochem.,

69,

195 (1976).

7. W. J. A l b e r y a n d M. L. Hitchman, "Ring Disc Electrodes," C l a r e n d o n Press, Oxford (1971). 8. M. R. T a r a s e v i c h a n d K. A. R a d y u s h t d n a , Sov. J.

Eleetrochem., 6, 370 (1970).

9. J. F. v a n der Plas a n d E. B a r e n d r e c h t , Ree. Tray. Chim. Pays Bas, 96, 133 (1977).

10. A. J. A p p l e b y a n d M. Savy, J. Electroanal. Chem. Interracial Eleetroehem., 92, 15 (1978).

Referenties

GERELATEERDE DOCUMENTEN

Drunk drivers have a higher risk of getting tested, since they drive relatively more at night (when most random road side tests take place), are relatively more involved in

Motorway, specification (standard), safety, highway design, Europe. Express roads are a rather miscellaneous road category hierarchically situated between motorways and ordinary

Therefore the theory of analytic manifolds over a Banach algebra rill be based on a class of one-to-one analytic functions whioh have several addi tional properties. From

We used the expressions from the FLCM also to obtain a relation through which the properties of the infinite lattice may be estimated from those of finite

The mechanisms that determine community structure The study of soil microbial communities mainly concentrated on for the factors which influence soil microbial diversity Weiner

24 homogeen grijsbruin veel brokjes ijzerzandsteen natuurlijke laag lemig zand met sterk.

Ik zie het als een belangrijke opgave om via een epidemiolo- gische aanpak (deel)populaties van dieren te doorzoeken op negatieve welzij nsindicatoren en daarbij vast te stellen

In dit.verband trof het.mij, wat een van mijn vrienden, een technicus, mij onlangs.zei. ,,De moderne techniek&#34;, redeneerde hij, ,,ontwikkelt zich duidelijk in zoodanige