• No results found

Heavy baryons with strangeness in a soliton model

N/A
N/A
Protected

Academic year: 2021

Share "Heavy baryons with strangeness in a soliton model"

Copied!
7
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Heavy

baryons

with

strangeness

in

a

soliton

model

J.P. Blanckenberg,

H. Weigel

PhysicsDepartment,StellenboschUniversity,Matieland7602,SouthAfrica

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received26May2015

Receivedinrevisedform11September 2015

Accepted12September2015 Availableonline15September2015 Editor:J.-P.Blaizot

Keywords: Chiralsoliton

Collectivecoordinatequantization SU(3)symmetrybreaking Boundstateapproach Hyperfinesplitting Heavybaryonspectrum

We present resultsfrom achiralsolitonmodel calculationfor thespectrum ofbaryonswith asingle heavy quark (charmorbottom)and non-zerostrangeness.We treatthestrange componentswithina threeflavorcollectivecoordinatequantizationofthesolitonthatfullyaccountsforlightflavorsymmetry breaking.Heavybaryonsemergebybindingaheavymesontothesoliton. Thedynamicsofthisheavy mesonisdescribedbytheheavyquarkeffectivetheorywithfinitemasseffectsincluded.

©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Motivation

Baryonscontainingheavyquarkssuchascharmorbottomform anexcellentopportunitytostudythebindingofquarkstohadrons. Since there is no exact solution to quantum-chromo-dynamics (QCD), various models and approximations that focus on partic-ularfeaturesofQCDare relevant.Inthecontextofheavy baryons threeare ofparticularimportance. First,there istheheavy spin– flavorsymmetry

[1]

1 that governsthedynamics ofheavy quarks.

Second,thereisthechiralsymmetrythat dictatestheinteractions among the light quarks. In addition to dynamical chiral symme-trybreaking, there issubstantial flavor symmetry breakingwhen thestrange quarkis involved.Itisthusparticularlyinteresting to investigate baryons that, in the valence quark picture, are com-posed of a single heavy quark and two light, including strange, quarks. Thirdly, generalizing QCD from three to arbitrarily many colordegrees offreedom suggests toconsider baryons assoliton configurationsinaneffectivemesontheory

[3]

.

Ourpointofdepartureis achiralsolitonofmesonfieldsbuilt fromup anddownquarks [4]. Stateswithgoodbaryon quantum numbers are generated by quantizing the fluctuationsabout the soliton. The modes associated with (flavor) rotations have large non-harmoniccomponentsandconsequentlyaretreatedas

collec-E-mailaddress:weigel@sun.ac.za(H. Weigel). 1 ForreviewsseeRef.[2].

tive excitations. The Hamiltonian for thesecollective coordinates contains flavor symmetry breaking terms that slightly suppress thenon-harmoniccontributions.Theimportantfeatureisthatthis Hamiltoniancan bediagonalizedexactly, i.e. thespectrumcan be determined beyond a perturbation expansion in the quark mass differences [5]. The resulting eigenvalues are associatedwith the strangenesscontribution tothe baryon masses.Forthe particular caseofkaon–nucleonscatteringthisapproachhasbeenverified

[6]

to yield the correct resonance position. Subsequently fields rep-resenting mesons witha single heavy quark are included. While theirheavyquarkcomponentsaresubjecttotheheavyspin–flavor symmetry,theirlightonescoupletothelightmesonfields accord-ing to chiralsymmetry such thatthe solitongeneratesan attrac-tive potential forthe heavy mesonfields [7]. Combined withthe soliton, a bound state in this potential builds the heavy baryon. (Thisisageneralization oftheso-calledboundstateapproach

[8]

that, in the harmonic approximation, describes hyperons in the Skyrme model [9].2) The strangeness components of the heavy

meson bound state are subject to thesame collective coordinate treatmentasthesoliton.

ShortlyaftertheboundstateapproachintheSkyrmemodelof pseudoscalarmesonswas appliedto hyperonsitwasextended to

2 While Ref.[10]comprehensivelyreviewssolitonmodelstudies,Ref.[6] thor-oughly discussesthe twoabovementioneddescriptionsofstrangenessinchiral solitonmodels,inparticularwithregardtothelargeNClimit.

http://dx.doi.org/10.1016/j.physletb.2015.09.026

0370-2693/©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

heavierbaryons

[11]

.Inthose studies therelevance ofthe heavy spin–flavor symmetry was not yet recognized. Subsequently, also heavy vector meson fields were included [12]. More or less at the same time investigations were performedin the heavy limit scenario [13,14]. Those heavy limit studies included neither cor-rectionstotheheavyspin–flavorsymmetryfromfinitemassesnor strangenessdegreesoffreedom.Inthatcase,baryonslike



c

can-not be addressed. Strangeness was indeed included in Ref. [15], however,lightflavor symmetry breakingwas treatedina pertur-bationexpansion andfinitemass effectswere omitted.Thisdoes not distinguish betweeneven and oddparity or charm and bot-tombaryonsandtypicallyoverestimatesthebindingenergyofthe heavymeson

[7]

.Alsotheparametersofthefinal energyformula were fitted ratherthan calculated from a realistic solitonmodel. These widespread bound state studies derive a potential for the mesonfields from the soliton that is fixed in position. We note thatthispicture isstrictly validonlyin thelarge numberof col-orslimitwhenthesolitonismoremassivethantheheavymeson. Thoughthisapproachisasystematicandconsistentexpansionin thenumberofcolors,kinematicalcorrectionsshould beexpected intherealworldwiththreecolors.

Our soliton model calculation for the spectrum of heavy baryonswillimprovewithregardtothefollowingaspects:Wetake theparametersinthemassformulafromanactual solitonmodel calculation(weallow formoderateadjustmentof thelight flavor symmetrybreaking strength), go beyondtheperturbation expan-sion in that symmetry breaking and construct the heavy meson bound state from a model that systematically incorporates finite masscorrections.Ourmodelcalculationwillproduceanextensive picture ofbaryons, fromthe nucleon up to the



b. We will not

considerdoubly-heavybaryons,though.

The spectrum of heavy baryons has been investigated in other approachesas well. Acomprehensive account of the (non-relativistic)quarkmodelapproachisgiveninRef. [16]withsome newerresults reported in Ref. [17]. Relativistic effects are incor-poratedwithin quark–diquarkmodels [18]. QCD sumrules were not only used to obtain the spectrum [19], but also to extract theheavy quarkmass poles

[20]

.LatticeQCDcalculationscan be tracedfromRef.[21]thatalsostudiesbaryonswithmorethanone heavyquark. Finally,Ref.[22] containscomprehensivereviewson baryonspectroscopythatdiscussavarietyofapproachesandmay beconsultedforfurtherreferences.

2. Thesolitonmodel

InchiralLagrangiansthe interactionterms are orderedby the numberofderivativesactingonthepseudoscalarfields.Themore derivatives there are, the more unknown parameters appear in the Lagrangian. Replacing these higher derivatives by resonance exchangeterms isadvantageousbecausemoreinformationis avail-abletodeterminetheparameters.Wethusconsiderachiralsoliton thatisstabilizedby vectormesons

ρ

and

ω

[23] asarefinement oftheSkyrmemodel

[4,9]

.Othershortcomingsofthepseudoscalar soliton,liketheneutronprotonmassdifferenceortheaxialsinglet matrixelementofthenucleonarealsosolvedwhenincludinglight vectormesons

[10]

.

The basicbuilding block of the model is the chiral field U

=

exp



i



8a=1

φ

a

(

x

a

/

fa



,i.e. thenon-linearrealizationofthe pseu-doscalaroctet field

φ

a

(

x

)

. Here fa are the respective decay

con-stants [ fπ

=

93 MeV (for a

=

1

,

2

,

3), fk

=

114 MeV (for a

=

4

,

. . . ,

7). The casea

=

8 requires additionalinput [24] butisnot relevanthere.]and

λ

a are theeightGell-MannmatricesofSU

(

3

)

.

Thestaticfieldconfigurationofthesolitonisthehedgehogansatz

U0

(

r

)

=

exp



τ

· ˆ

r F

(

r

)



,

ω

μ

(

r

)

=

ω

(

r

)

0 and

ρ

(im0)

(

r

)

=

ikmr

ˆ

k G

(

r

)

r

.

(1)

The isovector

τ

= (λ

1

, λ

2

, λ

3

)

comprises thethree Pauli matrices

fromtheisospinsubspaceofflavorSU

(

3

)

.Thespatialcomponents ofthe

ω

μ andthetimecomponentsofthe

ρ

μ fieldsarezero.For thelatter,i isanisospin/flavorindexandm

=

1

,

2

,

3 labelsits spa-tial components. The profile functions F

(

r

)

,

ω

(

r

)

and G

(

r

)

enter theclassicalenergyfunctional,Ecl.Theprofilesaredeterminedby

the minimization of Ecl,subject to boundaryconditions that

en-sureunitbaryonnumber:

F

(

0

)

=

0

,

d

ω

(

r

)

dr





r=0

=

0 and G

(

0

)

= −2

.

(2)

Allprofilefunctionsvanishasymptotically.Configurationsthatare suitable forquantizationareobtainedbyintroducingtime depen-dentcollectivecoordinatesfortheflavororientation A

(

t

)

SU

(

3

)

U

(

r

,

t

)

=

A

(

t

)

U0

(

r

)

A

(

t

)

and

τ

·

ρ

μ

(

r

,

t

)

=

A

(

t

)

τ

·

ρ

(μ0)

(

r

)

A

(

t

) .

(3)

In addition profile functions are induced for the spatial compo-nents of

ω

μ and the time components of

ρ

μ [25,26]. Defining eight angular velocities



a via the time derivative ofthe

collec-tivecoordinates i 2 8



a=1



a

λ

a

=

A

(

t

)

d A

(

t

)

dt

,

(4)

allowsacompactpresentationoftheLagrangefunctionforthe col-lectivecoordinatesfromthelightmesonfields

Ll

(

a

)

= −

Ecl

+

1 2

α

2 3



i=1



2i

+

1 2

β

2 7



α=4



2α

3 2



8

.

(5)

It isobtainedfromthe spatial integral overthe Lagrange density withtheabovedescribedfieldconfigurationsubstituted.Notethat the collective coordinates only appear via the angularvelocities; A doesnotappearexplicitly.Thelastterm,whichisonlylinearin thetime derivative,originatesfromtheWess–Zumino–Witten ac-tion [27] that incorporates theQCD anomaly.The coefficients

α

2

and

β

2 aremoments ofinertiaforrotations inisospace3 andthe strangenesssubspaceofflavorSU

(

3

)

,respectively.Thesemoments of inertia are functionals of the profile functions and the varia-tionalprincipledeterminestheinduced componentsofthevector mesonfields.ThestructureofthecollectivecoordinateLagrangian, Eq. (5) is generic to all chiral models that support soliton solu-tions.Theparticularnumericalvaluesfortheclassicalenergyand the moments of inertia are, of course, subject to the particular model.Here we employthe calculation described in Appendix A ofRef.[26]fortheentriesofEq.(5).

3. Heavymesonboundstate

Ineffectivemesontheories,theheavyflavorentersviaaheavy meson containing a single heavy quark (charm or bottom) of mass M.Thedynamicsoftheheavy mesonfollowstheheavy fla-voreffectivetheory

[2]

thattreatsthepseudoscalar( P )andvector meson( Q μ)componentsequivalently.Thatis,inthelimitM

→ ∞

thesecomponentsarepartofasinglemultiplet(Theconstant four-velocity V μ characterizestheheavyquarkrestframe.)

(3)

H

=

1 2

1

+

γ

μVμ



i

γ

5P

+

γ

μQμ



where P

=

e−iM V·xP and Qμ

=

e−iM V·xQμ

.

(6)

TheLagrangianthatdescribesthecouplingofthismultiplettothe light mesons includingthe vector mesons

ρ

and

ω

andrespects theheavyspin–flavorsymmetryis

[28]

1 M

L

H

=

i VμTr

H DμH

¯

d Tr

H

γ

μ

γ

5pμH

¯

i

2c Tr

H

γ

μ

γ

νFμνH

¯

+ . . . ,

(7)

whereH

¯

=

γ

0H

γ

0.Wetakethecovariantderivativetobe4

=

μ

+

i vμ. The chiral currents of the light pseudoscalar mesons are

,

=

2i

√

U

μ

U

±

U

μ

U



and F μν is the field strength tensor ofthe light vector mesons. The heavy–light cou-plingconstantsd

0

.

53 andc

1

.

60 weredeterminedfromheavy meson decays. A field theory model that minimally extends to finiteM and M∗ forthepseudoscalarandvectorcomponents, re-spectively,hasalsobeenconstructedinRef.[28]

L

H

=

DμP

DμP

1 2

Qμν

Qμν

M2PP

+

M∗2Qμ

+

2iMd



PpμQμ

pμP



d 2

αβμν



(

Q να

)

pμQβ

+

QβpμQνα



2

2icM mV



2QμFμνQν

i M

αβμν



D βP

FμνQα

+

FμνDβP



,

(8)

sothat

L

H

L

H intheheavylimit.HereQ μν is thefieldstrength

tensor of the heavy vector mesons. The central feature is that, throughthecouplingtothelight mesonsoliton,solutionsforthe heavy meson fields emerge with energy 0

<

ω

<

M, i.e. bound states. (Negative energy bound states are also possible. Eventu-ally they build pentaquark baryons that will not be considered here.)The most strongly bound solutionhas P-wave structure in thepseudoscalarcomponent:

P

=

e iωt

4

π

(

r

)

r

ˆ

· ˆ

τ χ

,

Q0

=

eiωt

4

π



0

(

r

)

χ

and Qi

=

eiωt

4

π



i



1

(

r

)

ˆ

ri

+

12



2

(

r

)

i jkr

ˆ

j

τ

k



χ

.

(9)

Here P andQ μ arethreecomponentspinorswhoseflavorcontent is parameterized by the (constant) spinor

χ

. Since the coupling to the light mesonsoccurs via a solitonin the isospin subspace, only the first two components of

χ

are non-zero. The four ra-dialfunctionsinEq.(9)coupletotheprofilesofthestaticsoliton, Eq.(1)inlineardifferentialequations.Normalizablesolutionsexist onlyforcertain valuesof

ω

.Thesesolutionsarethebound wave-functions.Theirconstruction,inparticularwithregardtofinite M corrections, andtheir normalizationtocarry unit heavy charge is explainedinRefs.[7]and

[14]

,respectively.Aheavybaryonisthen a compound system of the soliton for the light flavors and the bound state oftheheavy meson [8]. Thereare also boundstates

4 Symmetryallowstoalsoincludethe lightvectormesoninthisderivativeat theexpenseofanunknowncouplingconstant.Theboundstateenergiesonlyshow moderatesensitivityonthatconstant[7]soweomitithere.

inthe S-wavechannel inwhichtheheavy mesonfieldis param-eterized as(see Ref. [12] forparameterizations of higherangular momenta) P

=

e iωt

4

π

(

r

)

χ

,

Q0

=

eiωt

4

π



0

(

r

)

r

ˆ

· ˆ

τ χ

and Qi

=

eiωt

4

π





1

(

r

)

r

ˆ

ir

ˆ

· ˆ

τ

+ 

2

(

r

)

r

τ

· ∂

ir

ˆ



χ

.

(10)

They combine with the soliton to form negative parity heavy baryons [7,14]. Forconvenience we haveused equal symbolsfor the S and P -waveprofile functions but, of course, they are dif-ferent.Thecomputationoftheboundstateenergies

ω

from iden-tifying localized solutions to the equations of motions that arise by substitutingthe parameterizations, Eqs. (9)and (10),into the Euler–Lagrange equations ofEq. (8) isdetailed inAppendix A of Ref.[7].Thatreferencealsoprovidesfiguresoftheresultingprofile functions.

Theheavymesonfieldsmustalsoaccountforthecollective fla-vorrotationintroducedinEq.(3).Thisenforcesthesubstitution

P

−→

A

(

t

)

P and

−→

A

(

t

)

,

(11)

wheretherighthandsidescontainthefieldsintroducedinEqs.(9)

and

(10)

forP and S wavechannels, respectively.Thisgives non-zero strange components of the heavy mesons and couples the heavy meson strange quark to that of the soliton. Substituting thisflavorrotatingconfigurationintotheLagrangedensityand in-tegrating over space provides the collective coordinate Lagrange functionfromtheheavyfields

Lh

(

a

)

= −

ωχ

χ

+

1 2

3

χ



8

χ

+

ρχ





·

τ

2



χ

.

(12)

Again,theflavorrotationmatrixA doesnotappearexplicitly.With the time dependenceofthecollective coordinates,termsthat in-volve



8a=1

λ

a



a enter. In the heavy mesonsector the quadratic

termsprovidetheboundstatecontributionstothemomentsof in-ertia

α

2and

β

2.Sincetheboundstatewave-functionsarestrongly

localizedaroundthecenterofthesoliton5thelatterdominatesthe moments ofinertia.Itisthus safetoonlyretain thelinearterms in Eq. (12). At that order only a

=

1

,

2

,

3 and a

=

8 survive be-causethe boundstatesdonot haveanystrangenesscomponents. The normalizationof the bound state wave-function dictates the coefficients inthe firstandsecond terms. The hyperfinesplitting parameter

ρ

isafunctionalofallprofilefunctions,includingsome oftheinducedlightvectorfields.Itsexplicitexpressionisgivenin Eqs. (B.1)–(B.4) of Ref. [14], whereit iscalled

χ

P and

χ

S for P

-andS-wavechannels,respectively.

4. QuantizationinSU

(

3

)

,symmetrybreakingandhyperfine splitting

Before weconstructa Hamiltonoperatorforthecollective co-ordinatesviaLegendretransformationoftheLagrangianLl

+

Lh we

recall that therotations introduced in Eq.(3) are not exact zero modesinanysensitivemodel.ThereasonisthatSU

(

3

)

flavor sym-metryisexplicitlybrokenbydifferent(current)quarkmasses.This breakingismeasuredbytheratio

x

=

2ms

mu

+

md

,

(13)

5 Theirasymptotic behavioris e−|ω|reMr comparedtoemπr ofthechiral field.

(4)

where the mq are the current quark masses of the respective

quarks.It can be estimatedfrom mesondata [24,29,30]. In early solitonmodelstudiesthisratio wasconsidered to bequite large, x

30[24],orevenbigger

[31]

.Thiswasaccompaniedbysizable symmetrybreakingamongthehyperons

[26]

.Laterthisratiowas re-evaluatedandfoundtobesomewhatsmaller:20

x

25[30]. Thus it is appropriate to consider this ratiofor the (light) flavor symmetrybreakingasatunableparameter.Thensymmetry break-ingaddstothecollectivecoordinateLagrangian

Lsb

(

A

)

= −

x 2

γ

[1

D88

(

A

)

]

,

(14) where Dab

=

12tr



λ

aA

λ

bA



parameterizestheadjoint representa-tionofthe collectiverotations. The coefficient

γ

isagaina func-tionalof theprofile functionsand acquiresits main contribution fromtheclassical fields, Eq.(1).It can be computedin any soli-tonmodel.(Intheliterature

γ

=

x

γ

is typicallyused.)The heavy mesons also contribute to the symmetry breaking parameter by appropriately substituting mass matricesin Eq.(8). For example, forthecharmheavymesoninthe P -wavechannelwehave

γ

=

γ

soliton

+



0 drr2

 

m2D

m2Ds





2

+



m2D

m2Ds

 

−

2 0

+ 

12

+

1 2



2 2



.

(15)

Numericallythiscontributionissmallandcan easilybe compen-satedbyaslightchangeofx.

Wehave now collected all terms forthe collectivecoordinate LagrangianL

(

A

,

)

=

Ll

()

+

Lh

()

+

Lsb

(

A

)

andcanconstructthe

HamiltonoperatorbyLegendretransformation,

H

(

A

,

Ra

,

χ

)

=

Ecl

+

1 2



1

α

2

1

β

2





3 i=1 R2i

+

1 2

β

2 8



a=1 R2a

+

x 2

γ

[1

D88

(

A

)

]

3 8

β

2



1

1 3

χ

χ



2

+ |

ω

|

χ

χ

+

Hhf

,

(16)

whereRa

=

∂∂La definesthesaidLegendretransformation.The Ra

are the right generators of SU

(

3

)

since [ A

,

Ra]

=

A

a

/

2

)

upon

canonicalquantization.Thespinors

χ

containannihilationand cre-ationoperators fortheheavy mesonboundstate. Theyare quan-tized as ordinary harmonic oscillators. In particular

χ

χ

is the

numberoperator fortheheavy meson boundstate. Since we are consideringhadronswithasingle heavyquark, contributionsthat arequarticin

χ

havebeenomittedforconsistency.(Inthesquare atermthat isexplicitlyofquarticorderis maintainedbecauseit cancelsa similartermin



aR2

a,cf. subsectionbelow.)The

hyper-finesplittingpart,Hhf,thatemergesfromthelastterminEq.(12),

willbediscussedlater. 4.1. SU

(

3

)

diagonalization

The Hamiltonian, Eq. (16) is not complete without the con-straint

YR

=

√23R8

=

1

13

χ

χ

,

(17)

that arises from the terms linear in



8 in Eqs. (5) and (12).

Thustheheavybaryonshaverighthypercharge2

/

3.Sincethezero

strangenesscomponentsofanySU

(

3

)

representationhasequal hy-perchargeand right hypercharge, the SU

(

3

)

coordinates must be

quantized asdiquarks forheavy baryons [15].The most relevant diquarkrepresentationsaretheantisymmetricanti-tripletandthe symmetricsextet.

When symmetry breaking is included, elements of higher di-mensional representations withthesame flavorand R1,2,3

quan-tumnumbersareadmixed.Wefirstdeterminethequantum num-ber r in the intrinsicspin



3i=1R2

i

=

r

(

r

+

1

)

: In addition to its

dimensionality, an SU

(

3

)

representation is characterized by two sets of quantum numbers

(

I

,

I3

,

Y

)

for the flavor and

(

r

,

r3

,

YR

)

for the Ra degrees of freedom, respectively. The flavor

genera-tors are La

=



8b=1DabRb with L1,2,3

=

I1,2,3 and Y

=

√23L8

be-ingtheobservables.Low-dimensionalrepresentations(suchasthe anti-tripletandthesextet)arenon-degenerateandtheirelements with Y

=

YR have

|

I

|

= |

R

|

. Thus r equals the isospin (I) of

thezerostrangenesselementwithinan SU

(

3

)

representation:the anti-triplet has r

=

0 and the sextet has r

=

1. Symmetric and antisymmetric SU

(

3

)

representations do not mix under symme-try breaking. Hence r

=

0 and r

=

1 for a heavy baryon whose diquarkcomponentbuildsupfromtheanti-tripletandsextet, re-spectively. The admixture of higher dimensional representations hasbeenestimatedinaperturbationexpansionforhyperons

[32]

andheavybaryons

[15]

.Itcanalsobedoneexactlywithinthe so-calledYabu–Andoapproach

[5]

.ThestartingpointisanEulerangle representationofthecollectivecoordinates A inwhichthe conju-gate momenta Ra are differential operators. Then the eigenvalue

equation



8



a=1 R2a

+ (

x

γ

β

2

)

[1

D88

(

A

)

]



(

A

)

=

(

A

)

(18)

is cast into a set of coupled ordinary second order differential equations. The single variable is the strangeness changing angle in A. The particularsetting ofthe differentialequations depends onthe consideredflavor quantumnumbers.Forordinary baryons (YR

=

1) this treatment is reviewed in Ref. [10] andthe results

for diquark wave-functions that enter the heavy baryon wave-functions(YR

=

2

/

3)arereportedinRef.[33].Havingobtainedthe SU

(

3

)

-flavoreigenvalue

fromthedifferentialequationswe sim-plifytheSU

(

3

)

partandwrite

H

(

A

,

Ra

,

χ

)

−→

H

(

χ

)

=

Ecl

+



1

α

2

1

β

2



r

(

r

+

1

)

2

+

2

β

2

3 8

β

2



1

1 3

χ

χ



2

+ |

ω

|

χ

χ

+

H hf

.

(19)

The dependence of the eigenvalues

on x varies with spin and isospin.Hencethereisimplicithyperfinesplitting,however,italso appearsexplicitlyaswediscussnext.

4.2. Hyperfinesplitting

The eigenstates ofthe Hamiltonian, Eq.(16) are combinations inwhicheach termisaproduct oftwofactors,one isafunction of A and the other of

χ

. The combinations are such that eigen-statesofflavorandtotalspinaregenerated.Theflavorinformation is completely containedin A because flavor transformations cor-respond to multiplying A by unitary matrices from the left. To construct total spin eigenstates we consider the effect of spatial rotations.Thesolitonisthehedgehogconfigurationandspatial ro-tationsare equivalenttomultiplying A byunitary SU

(

2

)

matrices fromthe right.For theheavy mesonbound state this multiplica-tion mustbecompensatedby an additionalflavor transformation ofthespinor

χ

.Thusthetotalspinis

(5)

Table 1

Modelresultsforthemassdifferencesofthecharmandbottombaryons:N=MMN,c=MMc andb=MMb withtheM’scomputedfromEq.(22)in

comparisonwithavailableexperimentaldata.ThespinandisospinofaconsideredbaryonareI and j.TheSU(3)quantumnumberr isdefinedinthetext.Alldataare in MeV.Seetextforexplanationofquestionmarkonc.

(I,j,r) x=25 x=30 Expt.[34]

Pos. par. Neg. par. Pos. par. Neg. par. Pos. par. Neg. par.

N c N c N c N c N c N c (0,1/2,0) c 1230 0 1479 249 1233 0 1482 249 1347 0 1653 306 (1,1/2,1) c 1423 193 1664 434 1425 192 1666 433 1515 168 (1/2,1/2,0) c 1446 216 1695 465 1486 253 1735 502 1529 186 1851 504 (0,1/2,1) c 1693 463 1934 704 1756 523 1997 764 1756 409 (1/2,1/2,1) c 1557 328 1798 569 1588 355 1829 596 1637 290 – – (1,3/2,1) c 1464 234 1717 487 1466 233 1719 486 1579 232 (1/2,3/2,1) c 1598 369 1851 622 1629 396 1882 649 1706 359 1876 529(?) (0,3/2,1) c 1734 504 1987 757 1797 564 2050 817 1831 484 N b N b N b N b N b N b (0,1/2,0) b 4391 0 4560 168 4394 0 4563 168 4681 0 4973 292 (1,1/2,1) b 4601 210 4771 380 4603 209 4773 379 4872 191 (1/2,1/2,0) b 4608 216 4776 385 4647 253 4816 421 4855 174 (0,1/2,1) b 4871 480 5041 650 4935 540 5105 710 5110 429 (1/2,1/2,1) b 4736 345 4906 514 4766 372 4936 542 (1,3/2,1) b 4617 226 4785 393 4619 225 4787 392 4983 212 (1/2,3/2,1) b 4751 360 4919 528 4782 387 4950 555 5006 325 (0,3/2,1) b 4887 496 5055 664 4950 556 5118 724 J

= −

R

χ

τ

2

χ

.

(20)

Calling j thespin oftheconsideredbaryon thisimplies R

·

τ

=

j

(

j

+

1

)

r

(

r

+

1

)

34

j

(

j

+

1

)

r

(

r

+

1

)

,wheretheexpectation valuereferstotheheavymesonboundstate.Intheapproximation wehaveagainomittedtermsthat formallyare quarticin

χ

.This scalarproductappearsintheLegendretransformationwithrespect to



,

L

∂

·  −

1 2

α

2



2

ρχ





·

τ

2



χ

=

1 2

α

2R 2

+

ρ

α

2R

·

χ

τ

2

χ

.

(21)

Collectingpieceswegetthemassformula

M

=



1

α

2

1

β

2



r

(

r

+

1

)

2

+

2

β

2

3 8

β

2



1

N 3



2

+ |

ω

|

N

+

ρ

2

α

2[ j

(

j

+

1

)

r

(

r

+

1

)

] N

,

(22)

where N

=

0

,

1 counts the numberofheavy valencequarks con-tainedintheconsideredbaryon.Ithasbeenincludedinthe hyper-finesplittingtermsinceordinarybaryonshaver

=

j.Wehave col-lectedtheleadingcontributions tothebaryonenergyinthelarge numberofcolors(NC)expansion.However,a contribution

O(

N0C

)

is missing, the vacuum polarization energy Evac. It is the

quan-tumcorrectiontotheclassicalenergyEcl thatcannotberigorously

computedbecause thetheory is not renormalizable. Estimatesin theSkyrmemodelsuggestthat Evac considerablyreducesEcl[35].

Wecircumventthislimitationbyonlyconsideringmassdifferences forwhich Ecl and Evac cancelandconsequently omittheseterms

fromEq.(22).

Thisquantization schemepredicts two heavy



baryons with spin j

=

1

/

2:onehasr

=

0 and theother r

=

1.InanSU

(

3

)

sym-metric world the former would be an anti-triplet state and the latterasextetstate.Thereisnomixingbetweenthesebaryons be-cause



H

,

R2



=

0.For j

=

3

/

2 onlyoneheavy



baryon emerges

in this scheme since then r

=

1 is required. For the



hyperon thereis alsoonly asingle optionwith j

=

1

/

2 that isbuild from

theoctetstate.Thiscountingsuggeststorelater tothe intermedi-atespin Jm definedinRef.[11].

5. Numericalresults

Asmentionedabove,weconsidermassdifferences,becausethe model predictions forthe absolute massesare subject to uncon-trollablequantumcontributions.

Wefindtheenergyeigenvalues

inEq.(18)forallbaryonsand then compute their energies accordingto Eq.(22).We adoptthe SU

(

3

)

parametersfromRef.[26]:

α

2

=

5

.

144

/

GeV,

β

2

=

4

.

302

/

GeV

and6

γ

=

47MeV. Forthe heavy sector, the same solitonmodel was used in Ref. [14] to compute the bound state energies

ω

andhyperfineparameters

ρ

forboththe P - andS-wavechannels. From the modelcalculation described in Section 3 the following boundstateparameterswereobtained

ω

P

=

1326 MeV

,

ρ

P

=

0

.

140

,

ω

S

=

1572 MeV

,

ρ

S

=

0

.

181 (23)

and

ω

P

=

4494 MeV

,

ρ

P

=

0

.

053

,

ω

S

=

4663 MeV

,

ρ

S

=

0

.

046 (24)

in the charm and bottom sector, respectively (Ref. [14] lists the binding energies

ω

P,S

MD and

ω

P,S

MB.). Then we are left

with a single parameter, the effective symmetry breaking x de-fined in Eq. (13), that is not fully determined. We present our results forthecharm andbottombaryon spectra inTable 1, that alsocontainsthedataforexperimentallyobservedcandidates

[34]

. WenotethatmostofthequantumnumberslistedinRef. [34]are adapted fromthequark modelandstressthat r isnot aphysical observable. Hence assigning the experimental results for



type baryons to a particular r value is a prediction. Ref. [34] further-morelists



c

(

2625

)

and



b

(

5920

)

withspin j

=

3

/

2 thatare not

containedinourapproach:Werequire

|

j

r

|

=

1

/

2butthese



’s

haveneitherstrangenessnorisospinsotheymusthaver

=

0 and j

=

1

/

2.We complete thepicture by includingthe corresponding

resultsforthelow-lyingnon-heavybaryonsin

Table 2

.

Whencomparingourmodelresultstodatain

Table 1

and

Fig. 1

weseethatthemassdifferenceswithinagivenheavyquarksector

(6)

Fig. 1. (Coloronline.)Modelresultsandexperimentaldataforthemassdifferencesofpositiveparityheavybaryonsandthenucleon.Leftpanel:charmbaryons,rightpanel: bottombaryons.Theshadedareasarethemodelresultsfor x∈ [25,30]anddataareindicatedbylinesandthenumber(inMeV)iswrittenexplicitly.Asforordinary hyperons,theasterisksdenotetotalspinj=3

2.Notethedifferentscalesandoff-sets.Noexperimentaldatumforbisavailable.

Table 2

Massdifferencesfornon-heavybaryonswithrespecttothenucleoninMeV.

     − 

x=25 134 218 320 324 438 551 661 101 x=30 162 253 404 323 461 601 740 151

expt. 177 254 379 293 446 591 733 125

isoverestimated. Forexample Mc

Mc

=

463MeV for x

=

25, whiletheempiricalvalueis409 MeV.Furtherincreaseofx wors-ensthepicture.Ontheotherhand,asizablevalue(x

30)forthe symmetrybreakingisrequiredforagoodagreementfornon-heavy baryons.Simultaneouslythe splittingbetweendifferentsectorsis predictedonthelowside.The



c and



b areabout100 MeVand

300 MeV too low, respectively. This is inherited fromthe heavy flavorcalculationwhichoverestimatesthebindingenergiesinthe sensethat it istooclose tothe estimatefromexact heavy flavor symmetry.Thiscanalsobeseenfromtheparitysplittingwhichis underestimatedbyabout50 MeV(it vanishesintheheavy limit). Togetherwiththe effectofSU

(

3

)

symmetry breakingthe overes-timated binding combines to acceptable agreement for the mass differencesbetween the double strange baryons



c and



b and

thenucleon,atleastforx

=

30.Ithasbeenargued

[14]

that kine-matical correctionsdue to the solitonnot being infinitely heavy changethepredictionsfor

ω

P,S appropriately.Andindeed,

replac-ing the heavy meson massesby the reducedmass builtin con-junctionwiththeclassicalsolitonenergyincreases

ω

P byroughly

100 MeVand

ω

S byalmost200 MeV.

For j

=

1

/

2 and positive parity there is an interesting effect

inthe





system. The observedmass difference decreasesand even changes sign when the heaviest flavor turns from strange viacharmtobottom: M

M

=

125

,

14

,

17MeV.Partiallythe modelcalculation reproduces thiseffect. Forexample,for x

=

25 themass differences101, 23and6 MeV are predicted.Since the hyperfinesplittingonly hasa moderateeffect,themodelexhibits a similar scenario for the negative parity channel. Unfortunately, therearenodatatocomparewith.

Finally we discussourresults forthemassesof thosestrange heavybaryonsthathavepreviouslynotbeenconsideredinaheavy mesonsolitonmodelwithrealistic heavy mesonmasses:the



’s and



’s. Forthe positive parity heavy strange baryons we again observethatthemasssplittingswithinaheavymultipletare over-estimated.Amoderatereductionofthesymmetrybreakingratiox wouldbesufficient tomatchtheexperimental data.Forthe

neg-ativeparity



c with j

=

1

/

2 thetoolarge binding ofthe S-wave

reverses thispicture.Thisisnotthecaseforitsspin 3

/

2

counter-part.Interestinglyenough,Ref. [34] assigns thequantum number ofthis resonanceby assuming itto join an SU

(

4

)

multiplet with thenegativeparity



c

(

j

=

3

/

2

)

.Wehavearguedabovethatthis



c

isnotcontainedinourapproachbutshouldbe associatedwitha D-waveheavymeson.Thus,asindicatedin

Table 1

,itis question-abletoidentify

(

I

,

j

,

r

,

p

)

= (

1

/

2

,

3

/

2

,

1

,

−)

with



c

(

2815

)

.Rather

itisa predictionforanevenheavierresonancelikethe observed



c

(

2930

)

or



c

(

2980

)

whose quantum numbersstill need to be

determined

[34]

. 6. Conclusion

We have presented a model calculation for the baryon spec-trumthatcompriseslightandheavyflavors.Inparticularwehave focused on the role of light flavor symmetry breaking which is manifested by the strange quark being neither light nor heavy. Whenquantizingtheflavordegreesoffreedom,thecorresponding deviationsfromtheup-down sectorarehandled(numerically) ex-actly.Intheheavyflavorsectorthemodelisinspiredbytheheavy flavorsymmetry,withsubleadingeffectsarisingfromfinitemasses included.Theapproachalsoincludesthehyperfinesplittingforthe heavybaryons;amoderateeffectthatvanishesintheheavylimit. Themodelcalculationisall-embracing asitcontainsspin 1

/

2and 3

/

2 baryonsstartingfromthelightestbaryon (nucleon),including

hyperonsandextendingtoheavybaryonsofeitherparitythathave the valencequark contentstrange–strange–bottom. Thespectrum iscomputedfroma singlemassformulawhereessentiallyall pa-rametersaredeterminedusingdatafromthebaryonnumberzero sector.Wehavealsocalculatedmassesforheavybaryonsthatare yet tobe observed.Thoughwe can only provide an estimate for theirmasses,wefindarealisticindication fortheirpositions rela-tivetoobservedbaryons.

Theoverallagreementwithdataisasexpectedforchiralsoliton modelestimates.As knownfromearlierstudies,themass predic-tionsfortheheavybaryonsareonthelowsidewhencomparedto thenucleon.Withinaheavybaryonmultipletthecomputedmass differencesarelargerthan theexperimentaldata.Thisappears to becausedby toostronga remnantoftheheavyspin–flavor sym-metryintheapproach.Anunderstandingthatgoesbeyond adopt-ing reducedmassesin theboundstate approachis required. Fur-thermorethefine-tuningofthesymmetrybreakingratiox aswell asothermodelparametersthatinfluencethesolitonproperties

(7)

ap-pearsasan obviousendeavor.Actually,acompleteanalysiswithin avectormesonsolitonmodel(butalsoachiralquarkmodelasthe Nambu–Jona-Lasinio model[36]) showsthat additionalsymmetry breakingoperators such as



3i=1D8iRi [26] arise inthe

Hamilto-nian,Eq.(16).Theireffectsontheheavybaryonspectrumwillbe reportedinaforthcomingpaper.

Acknowledgement

Thisworksupportedinpart bytheNationalResearch Founda-tionNRF,grant 77454.

References

[1]E.Eichten,F.Feinberg,Phys.Rev.D23(1981)2724. [2]M.Neubert,Phys.Rep.245(1994)259;

A.V. Manohar,M.B.Wise, Camb.Monogr.Part.Phys. Nucl.Phys. Cosmol.10 (2000)1;

D.Blaschke,M.A.Ivanov,T.Mannel,in:Proceedings,InternationalSchoolon HeavyQuarkPhysics,Dubna,Russia,May2002,Lect.NotesPhys.647(2004)1. [3]E.Witten,Nucl.Phys.B160(1979)57.

[4]G.S.Adkins,C.R.Nappi,E.Witten,Nucl.Phys.B228(1983)552. [5]H.Yabu,K.Ando,Nucl.Phys.B301(1988)601.

[6]H.Walliser,H.Weigel,Eur.Phys.J.A26(2005)361.

[7]J.Schechter,A.Subbaraman,S.Vaidya,H.Weigel,Nucl.Phys.A590(1995)655. [8]C.G.Callan,I.R.Klebanov,Nucl.Phys.B262(1985)365;

C.G.Callan,K.Hornbostel,I.R.Klebanov,Phys.Lett.B202(1988)269; J.P.Blaizot,M.Rho,N.N.Scoccola,Phys.Lett.B209(1988)27;

N.N.Scoccola,H.Nadeau,M.A.Nowak,M.Rho,Phys.Lett.B201(1988)425. [9]T.H.R.Skyrme,Proc.R.Soc.Lond.A260(1961)127;

T.H.R. Skyrme,Int.J. Mod.Phys. A 3(1988) 2745,article reconstructed by I. Aitchison.

[10]H.Weigel,Lect.NotesPhys.743(2008)1.

[11]M.Rho,D.O.Riska,N.N.Scoccola,Phys.Lett.B251(1990)597; M.Rho,D.O.Riska,N.N.Scoccola,Z.Phys.A341(1992)343. [12]Y.-S.Oh,B.-Y.Park,D.-P.Min,Phys.Rev.D49(1994)4649;

Y.-S.Oh,B.-Y.Park,Phys.Rev.D51(1995)5016; Y.-S.Oh,B.-Y.Park,Phys.Rev.D53(1996)1605.

[13]Z.Guralnik,M.E.Luke,A.V.Manohar,Nucl.Phys.B390(1993)474; E.E.Jenkins,A.V.Manohar,M.B.Wise,Nucl.Phys.B396(1993)27; E.E.Jenkins,A.V.Manohar,M.B.Wise,Nucl.Phys.B396(1993)38;

D.-P.Min,Y.-S.Oh,B.-Y.Park,M.Rho,arXiv:hep-ph/9209275,1992; M.A.Nowak,I.Zahed,M.Rho,Phys.Lett.B303(1993)130;

K.S.Gupta,A.M.Momen,J.Schechter,A.Subbaraman,Phys.Rev.D47(1993) 4835;

D.-P.Min,Y.-S.Oh,B.-Y.Park,M.Rho,Int.J.Mod.Phys.E4(1995)47; Y.-S.Oh,B.-Y.Park,Z.Phys.A359(1997)83.

[14]M.Harada,A.Qamar,F.Sannino,J. Schechter,H. Weigel,Nucl. Phys.A 625 (1997)789.

[15]A.Momen,J.Schechter,A.Subbaraman,Phys.Rev.D49(1994)5970. [16]W.Roberts,M.Pervin,Int.J.Mod.Phys.A23(2008)2817. [17]H.J.Lipkin,M.Karliner,AIPConf.Proc.1388(2011)342;

M.Karliner,H.J.Lipkin,N.A.Törnqvist,EPJWebConf.70(2014)00024; M.Karliner,J.L.Rosner,Phys.Rev.D90(2014)094007;

M.Karliner,J.L.Rosner,arXiv:1506.06386,2015.

[18]D.Ebert,R.N.Faustov,V.O.Galkin,Phys.Lett.B659(2008)612. [19]J.-R.Zhang,M.-Q.Huang,Phys.Rev.D78(2008)094015;

Z.-G.Wang,Eur.Phys.J.A47(2011)81; Z.-G.Wang,Eur.Phys.J.C68(2010)459; H.-X.Chen,etal.,Phys.Rev.D91(2015)054034; R.N.Faustov,V.O.Galkin,Phys.Rev.D92(2015)054005; E.Santopinto,J.Ferretti,Phys.Rev.C92(2015)025202. [20]S.Groote,J.G.Körner,O.I.Yakovlev,Phys.Rev.D55(1997)3016.

[21]Z.S.Brown,W.Detmold,S.Meinel,K.Orginos,Phys.Rev.D90(2014)094507. [22]E.Klempt,J.-M.Richard,Rev.Mod.Phys.82(2010)1095;

M.M.Giannini,E.Santopinto,Chin.J.Phys.53(2015)020301.

[23]P.Jain,R.Johnson,Ulf-G.Meißner,N.W. Park,J. Schechter,Phys.Rev.D37 (1988)3252.

[24]J.Schechter,A.Subbaraman,H.Weigel,Phys.Rev.D48(1993)339. [25]Ulf-G.Meißner,N.Kaiser,W.Weise,Nucl.Phys.A466(1987)685. [26]N.W.Park,H.Weigel,Nucl.Phys.A541(1992)453.

[27]E.Witten,Nucl.Phys.B223(1983)422,433.

[28]J.Schechter,A.Subbaraman,Phys.Rev.D48(1993)332. [29]J.Gasser,H.Leutwyler,Phys.Rep.87(1982)77. [30]M.Harada,J.Schechter,Phys.Rev.D54(1996)3394.

[31]P.Jain,R.Johnson,N.W.Park,J.Schechter,H.Weigel,Phys.Rev.D40(1989) 855.

[32]N.W.Park,J.Schechter,H.Weigel,Phys.Lett.B224(1989)171.

[33]J.P.Blanckenberg,H.Weigel,in:R.Botha,T.Jili(Eds.),ProceedingsofSAIP2013, 2014,p. 525.

[34]K.A.Olive,etal.,ParticleDataGroup,Chin.Phys.C38(2014)090001. [35]F.Meier,H.Walliser,Phys.Rep.289(1997)383.

[36]R.Alkofer,H.Reinhardt,H.Weigel,Phys.Rep.265(1996)139; C.V.Christov,etal.,Prog.Part.Nucl.Phys.37(1996)91.

Referenties

GERELATEERDE DOCUMENTEN

[r]

(a) the symmetrically stacked Compton y-parameter maps for 1 million close pairs of CMASS galaxies; (b) the modelled signal from the galaxy host haloes only; and (c) the

Assuming that the current trends continue, the cosmic molecular gas density will further decrease by about a factor of two over the next 5 Gyr, the stellar mass will increase

This includes an adjustment to the correct jig dimensions in the software for a loading span of 119 mm and support span of 357 mm as specified in the AASHTO T 321: Standard Method

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:.. • A submitted manuscript is

The Linkages Project (2005), (a project designed to give clinic-based health workers and supervisors a basic understanding of HIV facts and prevention, mechanisms of

The soliton –similariton laser supports two distinct types of nonlinear shape- preserving pulses within the same cavity: solitons and si- milaritons, each of which acts as

Alle tussenstapjes zullen niet in de tekst voorkomen, aangezien dit niet prettig leest, maar voor wie toch graag wat meer details over de tussenstapjes wil weten; in de bijlage staan