• No results found

Cingulum White Matter Microstructure and Treatment Success in Veterans with Posstraumatic Stress Disorder: A Tractography Study

N/A
N/A
Protected

Academic year: 2021

Share "Cingulum White Matter Microstructure and Treatment Success in Veterans with Posstraumatic Stress Disorder: A Tractography Study"

Copied!
27
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Cingulum  White  Matter  Microstructure  and  Treatment  

Success  in  Veterans  with  Posstraumatic  Stress  Disorder  –    

A  Tractography  Study  

 

L.  van  Soolingen  (10209530)  

MSc  in  Brain  and  Cognitive  Sciences,  University  of  Amsterdam,  Cognitive  Neuroscience    

 

Keywords:  Posttraumatic  Stress  Disorder  (PTSD);  veterans;  trauma;  trauma-­‐focused  treatment;  DTI;   tractography;  cingulum  

     

Supervisor:  Mitzy  Kennis   Co-­‐assessor:  Elske  Salemink  

(2)

Abstract  

Posttraumatic   stress   disorder   (PTSD)   is   a   trauma-­‐   and   stressor-­‐related   psychiatric   condition   that   has   been  associated  with  whiter  matter  alterations  in  the  cingulum.  However,  the  neurobiological  effects   on  the  cingulum  of  available  trauma-­‐focused  treatment  for  PTSD  are  still  not  fully  understood.  The  aim   of  this  study  is  to  investigate  the  effect  and  location  of  the  effect  of  trauma-­‐focused  treatment  in  PTSD   on  the  white  matter  of  the  cingulum  by  using  diffusion  tensor  imaging  (DTI).  We  used  a  longitudinal   design  in  which  PTSD  patients  received  treatment  as  usual.  Pre-­‐  and  post-­‐treatment,  DTI  scans  were   obtained  from  veterans  with  (n=41)  and  without  PTSD  (n=20),  on  which  tractography  was  applied  to   reconstruct  the  cingulum.  Each  cingulum  bundle  was  divided  into  approximately  2mm-­‐long  segments.   Twenty-­‐three   patients   responded   to   treatment   (>30%   CAPS   reduction),   and   18   patients   did   not   respond  (<30%  CAPS  reduction).  A  linear  mixed-­‐effect  model  was  used  to  test  whether  trauma-­‐focused   treatment  as  a  function  of  time  has  a  different  effect  on  FA  values  for  Responders  and  Non-­‐Responders   compared  to  combat  control-­‐group.  A  trend  towards  an  interaction  was  found  for  group-­‐by-­‐time  for  FA   values   in   the   left   parahippocampal   cingulum,   which   was   driven   by   changes   in   the   Responders   over   time.   Our   results   indicate   that   increased   integrity   of   the   white   matter   microstructure   in   the   left   parahippocampal   cingulum   is   a   possible   effect   of   trauma-­‐focused   treatment   in   Responders   that   develops   during   treatment.   These   findings   highlight   the   importance   of   considering   the   spatial   distribution  of  effects  in  tractography  studies;  in  previous  studies  the  exact  localization  of  the  effect  of   trauma-­‐focused  treatment  in  PTSD  had  not  been  studied.  In  conclusion,  tractography  studies  can  shed   more  light  on  the  neurobiological  mechanisms  of  available  trauma-­‐focused  treatments.  

(3)

Introduction  

Posttraumatic   stress   disorder   (PTSD)   is   a   trauma-­‐   and   stressor-­‐related   psychiatric   condition   that   can   develop   after   trauma-­‐exposure   (DSM-­‐5,   American   Psychiatric   Association,   2013).   In   Dutch   Military   personnel   deployed   to   Afghanistan,   prevalence   of   PTSD   has   been   reported   to   be   5.6-­‐8.9%   after   deployment  (Reijnen  et  al.,  2015).  Common  symptoms  of  PTSD  are  re-­‐experiencing  of  the  traumatic   event   (e.g.   nightmares,   flashbacks),   avoidance   of   reminders   of   the   traumatic   event   and   emotional   numbing,   and   increased   arousal   (e.g.,   hyper   vigilance,   insomnia).   Moreover,   dysfunction   of   coping,   affective   reactions,   beliefs,   attention,   memory,   cognitive-­‐affective   reactions   and   social   support   has   been   identified   as   well   in   patients   with   PTSD   (DSM-­‐IV,   American   Psychiatric   Association,   1994).   All   these  symptoms  cause  impairment  in  daily  functioning  (Hoge  et  al.,  2006;  Van  Ameringen  et  al.,  2008).   To  help  these  PTSD  patients,  it  is  of  great  importance  to  understand  the  neurobiology  of  this  disorder.   Neuroimaging  techniques  have  been  used  to  unravel  the  neurobiology  of  PTSD.  Previous  neuroimaging   studies   have   revealed   structural   and   functional   alterations   in   the   amygdala,   hippocampus,   anterior   cingulate  cortex  (ACC)  and  ventromedial  prefrontal  cortex  (vmPFC)  (e.g.,  Brunetti  et  al.,  2010;  Pitman  

et   al.,   2012;   Shin   &   Liberzon,   2010).   Unravelling   the   neurobiology   of   PTSD,   such   as   identifying  

biomarkers   that   could   predict   treatment   response,   is   of   great   importance   to   improve   treatment   of   PTSD  (Garfinkel  and  Liberzon,  2009).  

  Effective  treatment  for  PTSD  can  be  Eye  Movement  Desensitization  and  Reprocessing  (EMDR)   and/or   Cognitive   Behavior   Therapy   (CBT)   with   exposure   (Harvey   et   al.,   2003;   Bradley   et   al.,   2005;   Ponniah  &  Hollon  2009).  One  of  the  key  points  of  EMDR  and  CBT  is  exposure  of  the  patient  to  trauma-­‐ related   stimuli,   which   weakens   the   trauma-­‐related   memories   and   leads   to   extinction   of   the   PTSD   patients  fear  and  symptoms  (Rothbaum  &  Davis,  2003;  Vermetten  et  al.,  2012).  However,  despite  the  

(4)

relative  success  of  trauma-­‐focused  treatment,  27  –  83%  of  the  PTSD  patients  do  not  respond  to  EMDR   (i.e.,   do   not   show   reduction   of   symptoms)   (Bradley   et   al.,   2005).   Investigating   the   different   brain   alterations   between   Responders   and   Non-­‐Responders   as   a   result   of   treatment   will   illuminate   the   biological   mechanisms   of   available   trauma-­‐focused   treatments   and   increase   the   possibility   to   match   treatments  to  different  patients  (Etkin  et  al.,  2005;  Garfinkel  and  Liberzon,  2009).    

  To  date,  a  few  structural  and  functional  neuroimaging  studies  showed  an  associating  between   pre-­‐treatment   structure   and   activity   of   the   cingulate   cortex   and   responsiveness   of   trauma-­‐focused   treatment.  Poor  improvement  in  PTSD  patients  after  CBT  was  associated  with  pre-­‐treatment  greater   activity  in  the  ventral  anterior  cingulate  in  response  to  fearful  and  neutral  facial  expressions  (Bryant  et  

al.,   2008a),   greater   activity   in   the   parahippocampal   cingulate   when   completing   a   Go/No-­‐Go   task  

(Falconer   et   al.,   2013)   and   larger   rostral   anterior   cingulate   cortex   volume   in   general   (Bryant   et   al.,   2008b).   PTSD   patients   who   did   not   respond   to   EMDR   showed   lower   grey   matter   density   in   bilateral   dorsal  cingulate  cortex  while  they  were  exposed  to  trauma-­‐related  pictures  (Nardo  et  al.,  2010).  These   results  suggest  that  there  are  possible  potential  differences  in  the  brain  of  PTSD  patients  who  respond   to  treatment  compared  to  those  that  do  not  respond.  Moreover,  these  results  suggest  the  possibility  of   using  biomarkers  that  could  predict  treatment  response.    

  These   studies   only   investigated   biological   differences   between   Responders   and   Non-­‐ Responders   prior   to   the   trauma-­‐focused   treatment   and   did   not   control   for   trauma   exposure.   Two   longitudinal  studies  where  the  PTSD  patients  underwent  scanning  prior  and  after  treatment  showed   that  poor  improvement  to  exposure  therapy  was  associated  with  higher  activity  in  the  rostral  anterior   cingulate  during  fear  processing  over  time  (Felmingham  et  al.,  2007)  and  higher  activity  in  the  dorsal   anterior   cingulate   in   Non-­‐Responders   in   response   to   negative   pictures   over   time   (van   Rooij   et   al.,  

(5)

2015).  Overall,  there  seems  to  be  some  evidence  to  indicate  that  poor  improvement  to  trauma-­‐focused   treatment  is  associated  with  higher  activity  in  different  segments  of  the  cingulate  cortex.    

  However,   all   the   studies   above   did   not   assess   possible   alterations   in   white   matter   over   time   after  trauma-­‐focused  treatment,  despite  previous  research  that  showed  differences  in  integrity  of  the   cingulum  in  PTSD  patients  vs.  controls  (Abe  et  al.,  2006;  Kim  et  al.,  2006;  Schuff  et  al.,  2011;  Fani  et  al.,   2012;   Zhang   et   al.,   2012;   Sanjuan   et   al.,   2013).   The   cingulum   bundle   interconnects   the   prefrontal   cortex  with  the  entire  temporal  limbic  complex  (Wakana  et  al.,  2004).  The  prefrontal  cortex  is  involved   in  extinction  (Shin  &  Liberzon  2010),  which  is  one  of  the  key  processes  in  EMDR  and  CBT  (Vermetten  et  

al.,  2012).  The  temporal  limbic  complex  contains  the  amygdala  and  hippocampus.  These  regions  are  

associated  with  generating  and  maintenance  of  emotional  responses  (Davis  1992),  and  encoding  and   retrieval  of  episodic/autobiographical  memories  (Eichenbaum  2000).  These  processes  are  impaired  in   PTSD  and  may  also  be  implicated  in  the  responsiveness  to  EMDR  treatment  (Shapiro,  1999;  Corrigan,   2004).   Because   the   cingulum   bundle   connects   the   prefrontal   cortex   with   these   regions,   it   can   be   suggested   that   the   white   matter   track   of   the   cingulum   bundle   plays   an   important   role   in   the   development  of  PTSD.  Therefore,  it  would  be  of  great  interest  to  assess  the  effect  of  trauma-­‐focused   treatment  on  the  microstructure  of  white  matter  in  PTSD.  

  In  recent  years,  diffusion  tensor  imaging  (DTI)  has  emerged  as  a  non-­‐invasive,  in  vivo  method   for  characterizing  microstructural  changes  of  white  matter  connections  (Jones  &  Leemans  2010).  DTI   measures   the   diffusion   of   water   molecules,   which   is   anisotropic   in   white   matter,   because   the   movement   of   the   water   molecules   is   constraint   by   physical   boundaries   (i.e.,   the   myelin   around   the   axon   repels   water   molecules).   Therefore,   the   water   molecules   diffuse   more   freely   along   the   main   orientation  of  the  white  matter  than  across  them  (Moseley  et  al.,  1990).  A  common  DTI  metric  that  

(6)

quantifies  the  diffusion  is  Fractional  Anisotropy  (FA),  which  is  an  index  of  the  microstructure  of  white   matter  and  provides  information  of  myelination,  axonal  density  and  coherence  of  fiber  orientation  (Le   Bihan  et  al.,  2001).  FA  is  highest  in  white  matter  (nearing  1)  and  lower  (nearing  0)  in  grey  matter  and   cerebrospinal  fluid  (Smith  et  al.,  2006).    

  A  few  studies  showed  differences  in  white  matter  microstructure  in  different  segments  of  the   cingulum  in  PTSD.  Previous  studies  have  reported  a  decreased  FA  in  PTSD  in  anterior  cingulum  (Kim  et  

al.,  2006;  Schuff  et  al.,  2011),  in  the  posterior  cingulum  (Fani  et  al.,  2012),  and  in  the  dorsal  cingulum  

(Sanjuan   et   al.,   2013).   Although   increased   FA   in   PTSD   has   also   been   found,   as   in   the   left   anterior   cingulum  (Abe  et  al.,  2006),  and  in  the  parahippocampal  cingulum  (Zhang  et  al.,  2012).  A  longitudinal   study  by  Zhang  et  al.  (2012)  showed  increased  FA  in  the  left  parahippocampal  cingulum  in  PTSD  over   time.  So  far,  only  one  study  has  investigated  the  effect  of  trauma-­‐focused  treatment  for  patients  with   PTSD  on  the  white  matter  microstructure  of  the  cingulum  bundle,  where  an  increase  in  FA  in  the  dorsal   cingulum   in   PTSD   over   time   was   found   over   the   course   of   unsuccessful   trauma-­‐focused   treatment   (Kennis  et  al.,  2015).  Moreover,  Kennis  et  al.  (2015)  found  an  interaction  between  group  and  time  for   FA  in  the  left  hippocampal  cingulum  and  left  dorsal  cingulum.  These  previously  published  studies  on   the  localization  of  the  effect  of  trauma-­‐focused  treatment  in  PTSD  on  the  white  matter  of  the  cingulum   are   not   consistent.   Because   of   all   these   findings   in   different   segments   of   the   cingulum,   the   neurobiological  effects  of  available  trauma-­‐focused  treatment  for  PTSD  are  still  not  fully  understood.       The  aim  of  this  study  is  to  investigate  the  effect  and  localization  of  the  effect  of  trauma-­‐focused   treatment  for  patients  with  PTSD  on  the  white  matter  microstructure  of  the  cingulum.  To  examine  this,   we  will  compare  the  FA  values  of  segments  of  the  cingulum  in  PTSD  patients  prior  and  after  trauma-­‐ focused   treatment.   In   this   way,   we   are   able   to   localize   the   effect   of   trauma-­‐focused   treatment   for  

(7)

patients   with   PTSD   on   the   white   matter   microstructure   of   the   cingulum.   We   will   compare   41   PTSD   patients  with  a  trauma-­‐exposed  control  group  (combat  control  group),  consisting  of  20  veterans  who   did  not  develop  PTSD.  MRI-­‐scans  were  obtained  at  two  time-­‐points  for  the  PTSD  group  and  combat   control  group:  Prior  to  trauma-­‐focused  treatment  (T0)  and  after  six  to  nine  months  (T6).  At  both  time   points   interviews   and   questionnaires   (to   measure   relevant   covariates,   early   trauma   etc.)   were   collected.   PTSD   patients   received   trauma-­‐focused   treatment   between   T0   and   T6.   We   will   systematically   investigate   segments   of   the   cingulum   bundle,   by   subdividing   the   cingulum   in   approximately  2mm  segments.  To  assess  the  microstructure  of  the  white  matter  of  these  segments,  FA   will   be   obtained   prior   and   after   trauma-­‐focused   treatment.   By   mean   of   this,   changes   in   the   microstructure  of  the  white  matter  of  the  segments    after  treatment  can  be  detected.  It  is  expected   that  PTSD  patients  will  have  pre-­‐treatment  lower  FA  values  in  the  cingulum  compared  to  controls,  and   that  these  FA  values  will  increase,  so  be  more  similar  to  trauma-­‐controls  after  successful  treatment.  

 

 

 

 

 

(8)

Methods  &  Materials

   

Participants  

In   total,   41   male   veterans   with   PTSD   and   20   male   veterans   without   PTSD   (combat-­‐control)   were   included  in  this  study.  All  PTSD  patients  were  recruited  from  one  of  the  outpatient  clinic  of  the  Military   Mental  Healthcare,  Ministry  of  Defence,  The  Netherlands.  PTSD  patients  were  included  when  current   PTSD  was  diagnosed  according  to  DSM-­‐IV  criteria  (American  Psychiatric  Association  1994).  Severity  of   the  PTSD  symptoms  was  assessed  with  the  CAPS  (the  clinician  administered  PTSD  scale)  (Blake  et  al.,   1995),   and   comorbid   psychiatric   disorders   were   assessed   with   the   Structural   Clinical   interview   for   DSM-­‐IV   axis   I   disorders   (SCID)   (First   et   al.,   1997).   The   combat   control-­‐group   was   recruited   via   advertisements,   where   participants   were   included   when   they   had   no   clinical   PTSD   symptoms   (CAPS≤15)  and  no  current  psychiatric  disorder.  Furthermore,  for  both  groups  inclusion  criteria  were  no   alcohol  or  substance  dependency,  and  no  neurological  disorder.  MRI-­‐scans  were  obtained  at  two  time-­‐ points   for   all   participants:   Prior   to   trauma-­‐focused   treatment   (T0)   and   one   after   six   to   nine   months   (T6).   At   both   time   points   interviews   were   collected.   Between   T0   and   T6,   all   PTSD   patients   received   ‘treatment  as  usual’,  consisting  of  CBT  and/or  EMDR  (Vermetten  et  al.,  2012).  Response  of  the  PTSD   patients  to  treatment  was  defined  as  a  reduction  of  at  least  30%  of  total  CAPS  score  at  T6  (Brady  et  al.,   2000;  Davidson  et  al.,  2001),  which  resulted  in  a  division  of  the  PTSD  patients  into  23  Responders  and   18   Non-­‐Responders.   Research   was   approved   by   the   University   Medical   Centre   Utrecht   ethics   committee   and   performed   in   line   with   the   Declaration   of   Helsinki   (World   Medical,   2013),   and   all   participants  have  written  informed  consent.  

(9)

Diffusion  MRI  data  pre-­‐processing  

At  T0  and  T6,  diffusion  MRI  data  were  obtained  using  a  3.0  Tesla  magnetic  resonance  imaging  scanner   (Philips   Medical   System,   Best,   The   Netherlands).   Diffusion   MRI   data   included   30   diffusion   weighted   images  wit  a  b-­‐value  of  1000  s/mm2  and  one  diffusion  un-­‐weighted  image  with  a  b-­‐value  of  0  s/mm2.  In   order  to  correct  for  distortions,  two  sets  of  diffusion  MRI  scans  were  obtained  using  reversed  phase-­‐ encoding  blips  with  the  following  sequence  parameters:  TE  =  68  ms,  TR  =  7057  ms,  matrix  128  x  99,   resolution   1,875   x   1,875   x   2,   no   gap,   SENSE   factor   3,   EPI   factor   35,   FOV   =   240   mm,   75   slices,   slice   thickness  2  mm.  The  obtained  scans  were  corrected  for  eddy  current  induced  geometric  distortions,   echo-­‐planar-­‐imaging   (EPI)   distortions,   and   subject   motion   (Leemans   &   Jones,   2009).   A   tensor   model   was  fitted  the  tensor  image,  which  was  used  for  tractography  and  to  calculate  fractional  anisotropy   (FA).   FA   is   an   index   of   the   microstructural   integrity   of   white   matter   and   provides   information   of   myelination,  axonal  density  and  coherence  of  fibre  orientation  (Le  Bihan  et  al.,  2001).  To  increase  the   signal  to  noise  ratio,  these  scalars  were  smoothed  (FWHM  8  mm).    At  last,  the  FA  values  obtained  by   the  two  sets  of  scans  were  averaged.    

 

Tractography    

First,  to  reconstruct  the  cingulum  bundle  in  the  brain,  whole  brain  tractography  has  been  performed   with  Explore  DTI  (Leemans  &  Jones,  2009).  In  order  to  obtain  a  complete  anatomical  cingulum  bundle   on  each  side  of  the  brain,  four  subdivisions  are  reconstructed  on  the  left  and  right  side  (based  on  Jones  

et   al.,   2013).   The   fibre   tract   pathways   were   extracted   by   defining   a   set   of   AND   and   NOT   regions   of  

interest   (ROIs)   based   on   a   representative   single   participant.   The   first   ROI   was   placed   vertical   at   the   rostral  end  of  the  cingulum  bundle,  right  under  the  most  posterior  part  at  the  anterior  flexure  of  the  

(10)

corpus   callosum.   The   second   ROI   was   placed   horizontal   at   the   most   anterior   point   of   the   cingulum   bundle,  perpendicular  to  the  fibres  of  the  cingulum  bundle.  The  third  ROI  was  placed  superior  in  the   middle  of  the  cingulum  bundle,  perpendicular  to  the  placed  ROI.  The  fourth  ROI  was  placed  horizontal   at  the  most  caudal  point  of  the  cingulum  bundle,  perpendicular  to  the  placed  ROI.  The  last  ROI  was   placed  in  line  with  the  most  superior  ROI  used  for  the  reconstruction  of  the  posterior-­‐  and  anterior   dorsal  cingulum.  See  figure  1  for  all  the  placed  ROIs.  

  After   tracing   these   four   subdivisions   on   a   representative   single   participant,   the   fibre   tract   pathways  of  the  cingulum  bundle  were  automatically  reconstructed  for  all  data  sets  (Lebel  et  al.,  2008),   and  stats  of  the  fibre  tracts  were  calculated  using  Explore  DTI  automatic  reconstruction  (Leemans  &   Jones,  2009).  The  tract  segment  between  two  consecutive  AND  ROIs  has  been  used.  After  obtaining   these  tracts,  a  filter  has  been  used  to  cut  off  tracts  that  are  leaving  and  re-­‐enter  the  segmented  region   (length   range   =   ±   3   x   SD   and   kappa   =   3).   Each   constructed   subdivision   of   the   cingulum   bundle   was   divided  into  segments  of  approximately  2mm  (voxel  size)  by  performing  uniform  tract  resampling  and   FA  values  has  been  calculated  for  all  the  segments  derived  from  the  four  subdivisions.      

                         

(11)

Statistical  analysis    

To  test  whether  trauma-­‐focused  treatment  as  a  function  of  time  has  a  different  effect  on  FA  values  for   Responders   and   Non-­‐Responders   compared   to   combat   control-­‐group,   a   linear   mixed-­‐effect   model   (lme4  package;  Bates,  Maechler  &  Bolker,  2012)  was  used.  As  fixed  effects,  we  entered  group  and  time   into  the  model.  For  the  left  and  right  cingulum  bundle,  the  linear  mixed-­‐effect  model  was  performed   separately   for   all   segments   derived   from   the   four   subdivisions.   To   correct   for   multiple   comparisons,   permutation   testing   was   used   with   a   statistical   threshold   of   p   <   0.05   (Nichols   &   Holmes,   2001).   However,   because   analyses   were   performed   for   the   left   and   right   cingulum   bundle   separately,   a   Bonferroni  correction  was  applied,  which  gives  a  statistical  threshold  of  p  <  0.025  (p=  0.05  /  2  =  0.025)   (Bland  &  Altman,  1995).  In  these  permutation  tests,  the  group  where  the  participants  are  assigned  to   was  shuffled.  Then  the  linear  mixed-­‐effect  model  was  performed  1000  times  to  acquire  a  distribution   under   the   null   hypothesis   of   the   maximum   length   of   consecutive   ranges   of   segments   showing   a   significant  per-­‐segment  effect.    This  was  used  to  define  the  criterion  for  when  a  range  of  per-­‐segment   significant   segments   had   a   significant   length.   This   approach   thus   controls   for   the   multiple   testing   problem,  without  automatically  becoming  highly  conservative  when  the  number  of  segments  is  high.   The   linear   mixed-­‐effect   model   as   well   the   permutation-­‐test   was   performed   in   R-­‐studio   (http://www.rstudio.org/).    

 

 

 

 

(12)

Results  

 

Participants

 

Descriptive  statistics  of  the  clinical  and  demographical  information  are  shown  in  table  1.  At  the  second   clinical  assessment,  23  patients  were  Responders  (>30%  CAPS  reduction),  and  18  patients  were  Non-­‐ Responders   (<30%   CAPS   reduction).   The   combat   controls,   Responders   and   Non-­‐Responders   did   not   differ  in  age  (F(2,58)  =  1.27,  p  =  0.29),  number  of  times  they  were  deployed  (X2(14)  =  12.59,  p  =  0.56),  time   since  last  deployment  (F(2,  57)  =  0.49,  p  =  0.61),  and  time  between  scans  (F(2,  57)  =  0.61,  p  =  0.55).  

 

Table  1  Descriptive  statistics  of  clinical  and  demographical  information  of  the  different  groups  

            Responders   (mean  ±  SD)   Non-­‐Responders     (mean  ±  SD)   Combat  control     (mean  ±  SD)   Test-­‐value   (df)   Sig.  Two-­‐              tailed   Demographical  information   N   Age  (range:  21-­‐57)       23   33.52  (±8.56)     18   38.44  (±10.30)     20   36.40  (±11.60)       F(2,58)  =  1.27       p  =  0.29   Deployment  information  prior  T0  

Number  of  times  deployed  (1  /  2    /  3  /  >3)   Time  since  last  deployment  (in  years)  

  (9  /  6  /  3  /  5)   7.70  (±7.78)     (6  /  2  /  7  /  2)   6.12  (±7.60)     (6  /  5  /  4  /  5)   5.65  (±5.65)     X2(14)  =  12.59   F(2,  57)  =  0.49     p  =  0.56   p  =  0.61   Treatment  information  prior  T0  

EMDR  treatments  before  T0     Numbers  of  sessions  (<5  /5-­‐10/>10)    

CBT  treatments  before  T0    

Numbers  of  sessions  (<5  /5-­‐10/>10)  

 

ECL  treatments  before  T0    

Numbers  of  sessions  (<5  /5-­‐10/>10)    

Structured  treatments  before  T0     Numbers  of  sessions  (<5  /5-­‐10/>10)  

    0.50  (±1.24)   (3  /  1  /  -­‐)     0.10  (±0.45)   (1  /  -­‐  /  -­‐)     0.00  (±0.00)   (-­‐  /  -­‐  /  -­‐)     0.15  (±0.49)   (2  /  -­‐  /  -­‐)       0.20  (±0.78)   (1  /  -­‐  /  -­‐)       2.13  (±4.41)   (1  /  1  /  2)     0.27  (±1.03)   (1  /  -­‐  /  -­‐)     0.00  (±0.00)   (-­‐  /  -­‐  /  -­‐)         t(33)  =  -­‐.83       t(33)  =  1.78       t(14)  =  1.00       t(19)  =  -­‐1.37       p  =  0.42       p  =  0.10       p  =  0.25       p  =  0.19      

(13)

Table  1  continued     Responders   (mean  ±  SD)   Non-­‐Responders     (mean  ±  SD)   Combat  control     (mean  ±  SD)   Test-­‐value   (df)   Sig.  Two-­‐              tailed   Medication  prior  T0   SSRI/SARI   Benzodiazepines   Antipsychotics   Other     4   7   2     7   3   -­‐   -­‐       X2(2)  =  4.19   X2 (1)  =  1.04   X2(1)  =  1.65   -­‐     p  =  0.12   p  =  0.31   p  =  0.20   -­‐    

Clinical  scores  prior  T0   Caps  total  score    

Current  comorbid  disorder  baseline  (SCID)   Mood  disorder   Anxiety  disorder   Somatoform  disorder     70.13  (±3.07)       13   4   1     69.78  (±2.69)       8   8   2         t(39)  =  -­‐0.08       X2(1)  =  0.59   X2 (1)  =  0.06   X2(1)  =  0.41     p  =  0.93       p  =  0.54   p  =  0.09   p  =  0.41     Scan  information  between  T0  –  T6  

Time  between  scans  (in  months)       6.57  (±0.99)         6.35  (±0.86)                         6.30  (±0.57)     F(2,  57)  =  0.61       p  =  0.55    

Treatment  information  between  T0-­‐T6   CBT  treatments  between  scans   Number  of  sessions  (<5  /5-­‐10/>10)    

EMDR  treatments  between  scans   Number  of  sessions  (<5  /5-­‐10/>10)    

 

ECL  treatments  between  scans   Numbers  of  sessions  (<5  /5-­‐10/>10)    

Structured  treatments  between  scans   Numbers  of  sessions  (<5  /5-­‐10/>10)  

  0.05  (±0.22)   (1  /  -­‐  /  -­‐)     5.60  (±4.32)   (6  /  7  /  4)     1.00  (±4.47)   (  /    /  1)     3.20  (±4.40)   (9  /  4  /  2)     4.38  (±5.33)   (2  /  3  /  4)     4.31  (±4.14)   (5  /  4  /  2)     0.81  (±2.29)   (-­‐  /  2  /  -­‐)     0.25  (±1)   (1  /  -­‐  /  -­‐)         t(15.04)  =  3.25       t(34)  =  -­‐0.91       t(34)  =  -­‐0.15       t(21.42)  =  -­‐0.15       p  =  0.00       p  =  0.37       p  =  0.88       p  =  0.01     Medication  T6   SSRI/SARI   Benzodiazepines   Antipsychotics   Other     5   5   2   -­‐     10   1   2   2       X2 (2)  =  9.45   X2 (1)  =  2.09   X2(1)  =  0.07   X2 (1)  =  2.73     p  =  0.01   p  =  0.15   p  =  0.79   p  =  0.10   Clinical  scores  T6  

Caps  total  score    

Current  comorbid  disorder  baseline  (SCID)   Mood  disorder   Anxiety  disorder   Somatoform  disorder     29.52  (±3.53)       3   2   0     66.94  (±3.95)       3   6   2         t(39)  =  7.06       X2(1)  =  0.16   X2(1)  =  4.32   X2 (1)  =  2.85     p  =  0.00       p  =  1.00   p  =  0.05   p  =  0.17                

(14)

Furthermore,  no  differences  were  found  between  the  responders  group  and  Non-­‐Responders  group  in   the   numbers   of   EMDR   sessions   (t(33)  =   -­‐.83,   p   =   0.42),   CBT   sessions   (t(33)   =   1.78,     p   =   0.10),   ECL   treatments  (t(14)  =  1.00,  p  =  0.25),  and  structured  treatments  (t(19)  =  -­‐1.37,  p  =  0.19)  before  T0.  The  total   numbers   of   EMDR   sessions   between   T0   and   T6   did   not   differ   between   the   Responders   and   Non-­‐ Responders  (t(34)  =  -­‐0.91,  p  =  0.37),  neither  did  the  total  numbers  of  ECL  treatments  (t(34)  =  -­‐0.15,  p  =   0.88).  However,  the  Non-­‐Responders  group  had  more  CBT  sessions  between  the  two  scans  compared   to  the  Responders  group  (t(15.04)  =  3.25,  p  =  0.00)  whereas  the  Responders  group  had  more  structured   treatments  (t(21.42)  =  -­‐0.15,  p  =  0.01).  The  CAPS  score  prior  to  treatment  was  not  different  among  the   Responder-­‐   and   Non-­‐Responder   group   (t(39)  =   -­‐0.08,   p   =   0.93).   However,   CAPS   score   at   the   second   clinical   assessment   was   higher   for   the   Non-­‐Responders   group   (t(39)  =   7.06,   p   =   0.00).   The   Non-­‐ Responders  group  used  more  SSRI/SARI  compared  to  Responders  post  treatment  (X2(2)  =  9.45,  p  =  0.01).   No  differences  were  found  prior  treatment  between  the  Responders  group  and  Non-­‐Responders  group   in  SSRI/SARI  (X2(2)  =  4.19,  p  =  0.12),  benzodiazepines  (X2(1)  =  1.04,  p  =  0.31)  or  antipsychotics  (X2(1)  =   1.65,  p  =  0.20).  Neither  did  the  two  groups  differs  post  treatment  in  benzodiazepines  (X2(1)  =  2.09,  p  =   0.15),  antipsychotics  (X2(1)  =  0.07,  p  =  0.79)  or  other  medication  (X2(1)  =  2.73,  p  =  0.10).  However,  they   did   differ   in   SSRI/SARI   (X2(2)   =   9.45,   p   =   0.01)   post   treatment,   in   which   10   participants   of   the   Non-­‐ Responders   group   against   5   participants   of   the   Responders   group   used   SSRI/SARI   medication.   At   baseline,   mood-­‐   (X2(1)  =   0.16,   p   =   1.00)   and   somatoform   disorder   was   equally   prevalent   among   the   Responders-­‐  and  Non-­‐Responder  group  (X2(1)  =  2.85,  p  =  0.17).  A  trend  was  observed  for  comorbidity  of   anxiety   disorder   (X2(1)   =   4.32,   p   =   0.05),   where   2   participants   of   the   Responders   group   and   6   participants  of  the  Non-­‐Responders  group  had  an  anxiety  disorder.      

(15)

Tractography  Analysis  

  Right   cingulum.   The   right   cingulum   was   divided   into   102   segments   of   approximately   2mm  

(voxel  size).  No  group-­‐by-­‐time  interaction  (p  =  0.659)  and  no  group-­‐effect  (p  =  1)  was  found  for  the  102   FA  values  of  the  right  cingulum.  

  Left  cingulum.  The  left  cingulum  was  divided  into  97  segments  of  approximately  2  mm  (voxel  

size).  A  trend  was  found  for  the  group-­‐by-­‐time  interaction  for  the  97  FA  values  (p  =  0.034)  of  the  left   cingulum.   This   trend   significant   effect   was   driven   by   the   Responders   group   over   time   (p   =   0.041),   where  we  found  a  maximum  range  of  five  consecutive,  significant  segments  (see  figure  2).  For  these   five  consecutive  segments,  the  three  different  groups  did  not  differ  in  FA  values  at  T0  (F(2,29)  =  1.231,  p   =   0.307).   At   T6,   a   trend   was   found   for   differences   between   the   groups   (F(2,29)  =   3.283,   p   =   0.052).   Responders  showed  a  significant  effect  of  time,  where  they  had  higher  FA  values  after  treatment  (t(10)=-­‐ 6.790,  p=0.000)  compared  to  their  own  FA  values  prior  treatment  (see  figure  3).  No  significant  effect  of   time  was  found  for  the  Non-­‐Responders  (t(8)=0.841,  p=0.425)  and  combat  control  (t(11)=0.964,  p=0.356).   In   the   Responders   group,   however,   no   correlation   was   found   between   symptom   improvement   and   delta  FA  (i.e.  the  differences  in  FA  value  on  T6  and  T0)  (r  =  0.160,  N  =  11,  p  =  0.64).    

           

(16)

     

   

Figure   2.   Tract   of   the   left   parahippocampal   cingulum.   P-­‐values   of   each   voxel-­‐sized   segment   are   plotted   (p   ≥  

0.05  are  plotted  in  blue,  whereas  p  <  0.05  are  plotted  in  a  range  from  red  through  blue,  with  p  =  0.00  is  red  and   p=   0.05   is   blue).   The   red   part   at   the   bottom   of   the   tract   is   the   maximum   found   range   of   five   consecutive,   significant  voxel-­‐size  segments.  

   

(17)

 

Figure  3.  Group  by  time  interaction  effect  in  mean  Fractional  Anisotropy  (FA)  values  for  the  five  consecutive,   significant   voxel-­‐size   segments   in   the   left   parahippocampal   cingulum.   Mean   FA   values   at   T0   and   T6   are  

presented   for   the   combat   controls   (blue   line),   Non-­‐Responders   (green   line),   Responders   (red   line).   The   error   bars  represent  the  standard  deviations.    

 

 

 

 

 

 

0,3   0,35   0,4   0,45   0,5   0,55   T0   T6   Me an  FA  

LeV  cingulum  

Group  by  Wme  interacWon  effect  

 

 Combat    Non-­‐responders    Responders  

(18)

Discussion  

To  investigate  the  effect  and  location  of  the  effect  of  trauma-­‐focused  treatment  in  PTSD  on  the  white   matter   of   the   cingulum,   diffusion   tensor   imaging   (DTI)   has   been   obtained   prior   (T0)   and   after   (T6)   treatment.  Twenty-­‐three  patients  responded  to  treatment  (>30%  CAPS  reduction),  and  18  patients  did   not  respond  (<30%  CAPS  reduction).  In  summary,  we  found  a  trend  towards  an  interaction  between   group-­‐by-­‐time   for   FA   values   in   the   left   parahippocampal   cingulum,   which   was   driven   by   the   Responders-­‐group   over   time.   Specifically,   this   trend   significant   effect   was   found   in   five   consecutive,   significant   segments   in   the   left   parahippocampal   cingulum,   where   Responders   showed   a   significant   increase  in  FA  values  over  time.  Additionally,  no  differences  were  found  in  FA  values  prior  to  treatment   between  the  different  groups.  However,  a  trend  was  found  for  differences  in  FA  between  the  different   groups   after   treatment:   The   FA   values   for   the   Responders   was   higher   compared   to   the   Non-­‐ Responders  and  combat  control.  

  These   results   suggests   that   trauma-­‐focused   treatment   has   an   effect   on   the   white   matter   microstructure  of  the  cingulum  bundle  in  PTSD  patients  who  respond  after  treatment.  The  results  of   this   study   seems   to   contradict   our   hypothesis   that   PTSD   patients   will   have   lower   pre-­‐treatment   FA   values   in   the   cingulum   compared   to   combat   controls   and   be   more   similar   to   combat   controls   after   successful  treatment.  However,  our  results  appear  to  support  the  hypothesis  that  in  the  Responders   group  the  FA  values  will  increase  over  time.  This  indicates  that  increased  integrity  of  the  white  matter   microstructure  in  the  left  parahippocampal  cingulum  is  a  possible  effect  of  successful  trauma-­‐focused   treatment  that  develops  over  time.  

  Previous  findings  of  Kim  et  al.  (2006),  Schuff  et  al.  (2011),  Fani  et  al.  (2012),  and  Sanjuan  et  al.   (2013)   showed   reduced   FA   values   in   PTSD   prior   to   treatment,   in   contrast   to   our   study   where   no  

(19)

differences  were  found  in  FA  values  between  the  different  groups  at  T0.  This  contradicting  finding  is   possibly  due  to  differences  in  used  control  groups  between  these  mentioned  studies  and  this  current   study.  Some  of  these  studies  did  not  include  a  control  group  at  all,  or  included  a  non-­‐deployed  control   group,  whereby  they  did  not  control  for  trauma-­‐exposure.    

  Results  of  the  current  study  are  in  line  with  a  previous  study  of  Zhang  et  al.  (2012),  which  also   showed  an  increase  in  FA  in  PTSD  in  the  parahippocampal  cingulum.  In  this  current  study  it  has  been   shown  that  this  increase  in  FA,  located  in  the  parahippocampal  cingulum,  was  specific  to  PTSD  patients   who   respond   to   trauma-­‐focused   treatment.   We   found   a   trend   significant   difference   between   these   heightened  FA  values  of  the  Responders  compared  with  the  Non-­‐Responders  and  combat  controls.  In   line  with  our  results,  a  few  structural  neuroimaging  studies  showed  an  associating  between  structure   changes  over  time  and  responsiveness  of  trauma-­‐focused  treatment.  Lindauer  et  al.  (2005)  and  Levy-­‐ Gigi   et   al.   (2013)   demonstrated   that   PTSD   patients   had   smaller   hippocampal   volumes   compared   to   trauma-­‐exposed  controls  prior  to  treatment.  After  successful  psychotherapy,  the  hippocampal  volumes   of   PTSD   patients   were   increased   and   therefore   no   volume   changes   were   found   between   the   PTSD   patients   and   trauma-­‐exposed   controls.   Besides,   Levy-­‐Gigi   et   al.   (2013)   showed   that   improvement   in   PTSD   symptoms   was   associated   with   increased   hippocampal   volume.   However,   so   far,   no   studies   explore   the   activation   of   the   hippocampus   prior-­‐   and   post   successful   treatment.   Therefore,   future   research   should   assess   hippocampal   activity   prior-­‐   and   post   successful   treatment,   and   the   possible   relationship   of   the   hippocampal   activity   over   time   and   FA   in   the   left   parahippocampal   cingulum.   Moreover,  if  this  relationship  would  be  confirmed  in  future  research,  one  possible  treatment  for  PTSD   could  be  deep-­‐brain  stimulation  during  trauma-­‐focused  treatment  by  means  of  deep-­‐brain  stimulation  

(20)

in  areas  such  as  the  hippocampus,  to  induce  increased  FA  values  in  the  left  parahippocampal  cingulum,   which  may  result  in  successful  treatment.  

  We  note  some  limitations  of  the  current  study.  Firstly,  as  result  of  missing  values,  there  is  a  lack   of  power  in  the  current  study.  Secondly,  many  segments  were  used  in  the  current  study  (in  total  199   segments).   The   kind   of   correction   provided   by   the   permutation   testing   technique   does   not   result   in   extremely   conservative   tests   due   to   the   number   of   segments,   but   it   is   unclear   what   the   optimal   number  of  segments  is  in  terms  of  noise.  However,  due  to  the  use  of  relatively  many  segments,  we   were   able   to   localize   precisely   the   effect   of   successful   trauma-­‐focused   treatment   on   the   cingulum.   Further   research   could   recruit   more   participants   which   will   result   in   an   increase   in   power   of   the   analysis.   Moreover,   to   assess   whether   increased   integrity   of   white   matter   microstructure   of   the   cingulum   is   a   biological   mechanism   that   underlies   responsiveness   of   trauma-­‐focused   treatment,   further   research   should   perform   a   longitudinal   study   whereby   the   development   of   recently   traumatized   subjects   are   assessed   to   determine   whether   alterations   in   integrity   of   white   matter   microstructure  develops  prior  to  the  onset  of  PTSD  or  perhaps  is  acquired  after  the  onset  of  PTSD  and   in   that   case   when   exactly   it   is   acquired.   These   further   studies   are   needed   to   unravel   possible   biomarkers  that  could  predict  treatment  response.  Thirdly,  some  PTSD  patients  were  taking  medication   at  T0  and  T6.  Specifically,  the  Non-­‐Responders  were  taken  significant  more  SSRI/SARI  compared  with   the  Responders  group.  Besides,  we  included  PTSD  patients  with  comorbid  disorders,  whereby  at  both   prior-­‐   and   after-­‐treatment   the   Non-­‐Responders   group   had   near   significant   more   comorbid   anxiety   disorder  compared  to  Responders.  A  study  by  Tarrier  et  al.  (2000)  showed  that  poorer  outcome  after   treatment  was  associated  with  more  comorbid  anxiety  disorder.  Taken  these  and  our  results  together,   it   seems   that   PTSD   patients   with   more   comorbid   anxiety   disorders   shows   a   poorer   response   to  

(21)

treatment  compared  to  PTSD  patients  with  less  comorbid  anxiety  disorders.  However,  in  this  current   study,  post-­‐hoc  analyses  demonstrated  that  there  is  no  correlation  between  number  of  comorbidity   anxiety   disorders   prior   nor   after   treatment   and   delta   FA   values.   Therefore,   it   is   unlikely   that   in   this   study   comorbid   anxiety   disorders   confounds   our   results.   However,   further   studies   are   needed   to   unravel  the  exact  mechanism  whether  and  which  medication  and  comorbid  disorders  influences  white   matter  microstructure.  Finally,  the  PTSD  patients  received  ‘treatment  as  usual’.  As  results  show,  the   Non-­‐Responders  group  received  significant  more  CBT  sessions  compared  to  the  Responders-­‐group  in   between   the   two   scans.   This   contrasts   with   the   structured   treatment   sessions   (not   protocolized   treatment   sessions),   of   which   the   Responders   received   significant   more.   Post-­‐hoc   analysis   revealed   there   was   a   trend   significant   correlation   between   CAPS   improvement   and   number   of   structured   treatment  sessions  as  well  as  a  trend  significant  correlation  between  delta  FA  and  number  of  sessions   of  EMDR  and  structured  treatment  sessions.  Taken  together,  these  results  suggest  that  it  is  possible   that  the  effects  on  FA  reflected  effects  of  receiving  different  treatments.  Additionally,  one  limitation  in   this  current  study  is  the  duration  of  the  trauma-­‐focused  treatment    that    the  PTSD  patients  received.   Namely,  it  could  be  the  case  that  6-­‐8  months  of  trauma-­‐focused  treatment  is  not  long  enough  for  each   participant   to   acquire   increased   integrity   of   the   white   matter   microstructure   of   the   left   parahippocampal  cingulum.  Besides,  not  all  participants  were  at  the  end  of  their  treatment  program  at   T6.  Therefore,  future  studies  should  follow  PTSD  patients  for  a  longer  time  till  they  show  a  response  to   trauma-­‐focused  treatment.  This  will  allow  to  unravel  the  neurobiological  effects  and  the  onset  of  these   effects  of  available  trauma-­‐focused  treatment  for  PTSD.  

(22)

Conclusion    

The  current  study  indicates  that  the  white  matter  microstructure  of  the  left  parahippocampal  cingulum   may   be   affected   by   trauma-­‐focused   treatment   in   PTSD.   The   findings   highlight   the   importance   of   considering   the   spatial   distribution   of   effects   in   tractography   studies.   In   conclusion,   tractography   studies  can  selectively  assess  the  effect  of  trauma-­‐focused  treatment  in  PTSD,  and  shed  more  light  on   the   neurobiological   mechanisms   of   available   trauma-­‐focused   treatments.   However,   longitudinal   studies  which  assess  the  participants  immediately  after  trauma-­‐exposure  and  until  they  cease  receiving   any  trauma-­‐focused  treatment  anymore  are  needed.  In  conclusion,  the  integrity  of  the  white  matter   microstructure  of  the  left-­‐parahippocampal  cingulum  appear  to  be  potentially  an  important  factor  in   the  outcome  of  trauma-­‐focused  treatment  in  PTSD.  

(23)

Literature

 

 

Abe,  O.,  Yamasue,  H.,  Kasai,  K.,  Yamada,  H.,  Aoki,  S.,  &  Iwanami,  A.  et  al.  (2006).  Voxel-­‐based  diffusion  tensor  analysis  reveals  aberrant   anterior  cingulum  integrity  in  posttraumatic  stress  disorder  due  to  terrorism.  Psychiatry  research,  146,  231-­‐242.  

 

American  Psychiatric  Association.  Diagnostic  and  statistical  manual  of  mental  disorders.  5th  ed.  (2013).  Arlington:  American  Psychiatric   Association.  

 

Bates,  D.M.,  Maechler,  M.,  &  Bolker,  B.  (2012).  lme4:  Linear  mixed-­‐effects  models  using  S4  classes.  R  packages  version  0.999999-­‐0.    

Bland,  J.M,  &  Altman,  D.G.  (1995).  Multiple  significance  tests:  The  Bonferroni  method.  British  Medical  Journal,  310,  170.    

Bradley,   R.,   Greene,   J.,   Russ,   E.,   Dutra,   L.,   &   Westen,   D.   (2005).   A   multidimensional   meta-­‐analysis   of   psychotherapy   for   PTSD.   The   American  Journal  of  Psychiatry,  162,  214-­‐227.  

 

Brady,  K.,  Pearlstein,  T.,  Asnis,  G.M.,  Baker,  D.,  Rothbaum,  B.,  &  Sikes,  C.R.  et  al.  (2000).  Efficacy  and  safety  of  sertraline  treatment  of   posttraumatic  stress  disorder.  Journal  American  Medical  Association,  283,  1837-­‐1844.  

 

Bryant,  R.A.,  Felmingham,  K.,  Kemp,  A.,  Das,  P.,  Hughes,  G.,  &  Peduto,  A.  et  al.  (2008a).  Amygdala  and  ventral  anterior  cingulate  activation   predicts  treatment  response  to  cognitive  behaviour  therapy  for  post-­‐traumatic  stress  disorder.  Psychological  medicine,  38,  555-­‐561.    

Bryant,   R.A.,   Felmingham,   K.,   Whitford,   T.J.,   Kemp,   A.,   Hughes,   G.,   &   Peduto,   A.   et   al.   (2008b).   Rapport   sommaire   rostral   anterior   cingulate  volume  predicts  treatment  response  to  cognitive-­‐behavioural  therapy  for  posttraumatic  stress  disorder.  Journal  of  Psychiatry  &   Neuroscience,  33,  142-­‐146.  

 

Corrigan,   F.M.   (2004).   Psychotherapy   as   assisted   homeostasis:   Activation   of   emotional   processing   mediated   by   the   anterior   cingulate   cortex.  Medical  hypotheses,  6,  968-­‐973.  

   

(24)

Davis,  M.  (1992).  The  role  of  the  amygdala  in  fear  and  anxiety.  Annual  review  of  neuroscience,  15,  353-­‐375.    

Etkin,  A.,  Pittenger,  C.,  Polan,  H.J.,  &  Kandel,  E.R.  (2005).  Toward  a  neurobiology  of  psychotherapy:  Basic  science  and  clinical  applications.   Journal  of  Neuropsychiatry  and  Clinical  Neuroscience,  17,  145-­‐158.  

 

Falconer,   E.,   Allen,   A.,   Felmingham,   K.L.,   Williams,   L.M.,   &   Bryant,   R.   (2013).   Inhibitory   neural   activity   predicts   response   to   cognitive-­‐ behavioral  therapy  for  posttraumatic  stress  disorder.  The  Journal  of  clinical  psychiatry,  74,  895-­‐901.  

 

Fani,  N.,  King,  T.Z.,  Jovanovic,  T.,  Glover,  E.M.,  Bradley,  B.,  Choi,  K.  et  al.  (2012).  White  matter  integrity  in  highly  traumatized  adults  with   and  without  post-­‐traumatic  stress  disorder.  Neuropsychopharmacology,  37,  2740-­‐2646.  

 

Felmingham,  K.,  Kemp,  A.,  Williams,  L.,  Das,  P.,  Hughes,  G.,  &  Peduto,  A.  et  al.  (2007).  Changes  in  anterior  cingulate  and  amygdala  after   cognitive  behavior  therapy  of  posttraumatic  stress  disorder.  Psychological  science,  8,  127-­‐129.  

 

First,  M.B.,  Spitzer,  R.L,  &  Gibbon,  M.  (1997).  Structured  Clinical  Interview  for  DSM-­‐IV  Axis  I  Disorders.      

Harvey,  A.G.,  Bryant,  R.,  &  Tarrier,  N.  (2003).  Cognitive  behaviour  therapy  for  posttraumatic  stress  disorder.  Clinical  Psychology  Review,   23,  501-­‐522.  

 

Hoge,  C.W.,  Auchterlonie,  J.L.,  &  Milliken,  C.S.  (2006).  Mental  health  problems,  use  of  mental  health  services,  and  attrition  from  military   service  after  returning  from  deployment  to  Iraq  or  Afghanistan.  The  Journal  of  the  American  Medical  Association,  295,  1023-­‐1032.    

Jones,  D.K.,  &  Leemans,  A.  (2010).  Diffusion  Tensor  Imaging.  Magnetic  Resonance  Neuroimaging,  711,  127-­‐144.    

Kennis,  M.,  Rademaker,  A.R.,  van  Rooij,  S.J.H.,  Tromp,  D.P.M.,  Fox,  A.S.,  Rademaker,  A.R.,  &  Kahn,  R.S.  et  al.  (2015).  Treatment  outcome-­‐ related  white  matter  differences  in  veterans  with  posttraumatic  stress  disorder.  Neuropsychopharmacology,  advance  online  publication,   22  April  2015  (doi:  10.1038/npp.2015.94).  

(25)

Kim,   S.J.,   Jeong,   D.,   Sim,   M.E.,   Bae,   S.C.,   Chung,   A.,   &   Kim,   M.J.   et   al.   (2006).   Asymmetrically   altered   integrity   of   cingulum   bundle   in   posttraumatic  stress  disorder.  Neuropsychobiology,  54,  120-­‐125.  

 

Le   Bihan,   D.,   Mangin,   J.,   Poupon,   C.,   Clark,   C.A.,   Pappata,   S.,   &   Molko,   N.   et   al.   (2001).   Diffusion   tensor   imaging:   Concepts   and   applications.  Journal  of  Magnetic  Resonance  Imaging,  13,  534-­‐546.  

 

Lebel,  C.,  Walker,  L.,  Leemans,  A.,  Phillips,  L.,  &  Beaulieu,  C.  (2008).  Microstructural  maturation  of  the  human  brain  from  childhood  to   adulthood.  NeuroImage,  40,  1044-­‐1055.  

 

Leemans,  A.,  and  Jones,  D.K.  (2009).  The  B-­‐matrix  must  be  rotated  when  correcting  for  subject  motion  in  DTI  data.  Magnetic  Resonance  in   Medicine,  61,  1336-­‐1349.  

 

Levy-­‐Gigi,   E.,   Szabó,   C.,   Kelemen,   O.,   &   Kéri,   S.   (2013).   Association   among   clinical   response,   hippocampal   volume,   and   FKBP5   gene   expression  in  individuals  with  posttraumatic  stress  disorder  receiving  cognitive  behavioral  therapy.  Biological  Psychiatry,  74,    793-­‐800.    

Lindauer,  R.J.L.,  Vlieger,  E.,  Jalink,  M.,  Olff,  M.,  Carlier,  I.V.E.,  &  Majoie,  C.B.L.M.  et  al.  (2005).  Effects  of  psychotherapy  on  hippocampal   volume  in  out-­‐patients  with  post-­‐traumatic  stress  disorder:  A  MRI  investigation.  Psyhological  Medicine,  35,  1421-­‐1431.  

 

Moseley,   E.,   Wendland,   F.,   Kucharczyk,   J.,   &   Tsumuda,   J.   (1990).   Diffusion-­‐weighted   MR   imaging   of   anisotropic   water   diffusion   in   cat   central  nervous  system.  Radiology,  176,  439-­‐445.  

 

Nardo,  D.,  Högberg,  G.,  Chee  Leong  Looi,  J.,  Larrson,  S.,  Hällström,  T.,  &  Pagani,  M.  (2010).  Gray  matter  density  in  limbic  and  paralimbic   cortices  is  associated  with  trauma  load  and  EMDR  outcome  in  PTSD  patients.  Journal  of  Psychiatric  Research,  44,  477-­‐485.  

 

Nichols,   T.E.,   &   Holmes,   A.P.   (2001).   Nonparametric   permutation   tests   for   functional   neuroimaging:   A   primer   with   examples.   Human   Brain  Mapping,  15,  1-­‐25.  

 

Ponniah,   K.,   &   Hollon,   S.D.   (2009).   Empirically   supported   psychological   treatments   for   adult   acute   stress   disorder   and   posttraumatic   stress  disorder:  A  review.  Depression  and  anxiety,  26,  1086-­‐1109.  

Referenties

GERELATEERDE DOCUMENTEN

However, to our knowledge the criterion of co-segregation within families of probands (criterion 4, first element) has not been examined in previous work. Using DTI data from the

WHITEMATTERS WH ITEMATTERS WHIT EMATTERS WHITEM ATTERS WHITEMAT TERS WHITEMATTE RS WHITEMATTERS WHITE ITEMATTERS WHIT EMATTERS WHITEM ATTERS WHITEMAT TERS WHITEMATTE RS W WH HIIT TE

The studies presented in this thesis are based on the MRI substudy of the PROspective Study of the Elderly at Risk (PROSPER). A brief overview of the PROSPER study is given in

The data of this thesis were collected within the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER), a randomised, double blind, placebo-controlled trial to test

User preferences Fuzzyfication Adaptive Re asoning T2 PD Brain stripping Templates FLAIR Image registration Template Mapping CR -FLAIR FCM FCM FCM INFERENCE (CSF &amp;

White matter hyperintensities were assessed with use of both the visual semiquantitative Scheltens scale and an inhouse developed quan- titative volumetric method.. Firstly, with

In our longitudinal study, we found that a reduction of total cerebral blood flow was not associated with an increase of deep WMH, whereas an association was observed between

De hier beschreven processen zijn vooral werkzaam in delen waar de bodem een hoog organisch stofgehalte heeft (ongeplagde deel Oude maatje en lage deel Westelijke maatje)..