• No results found

Fabrication of millimeter-long structures in sapphire using femtosecond infrared laser pulses and selective etching

N/A
N/A
Protected

Academic year: 2021

Share "Fabrication of millimeter-long structures in sapphire using femtosecond infrared laser pulses and selective etching"

Copied!
12
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Optics

and

Lasers

in

Engineering

journalhomepage:www.elsevier.com/locate/optlaseng

Fabrication

of

millimeter-long

structures

in

sapphire

using

femtosecond

infrared

laser

pulses

and

selective

etching

L.

Capuano

a,∗

,

R.M.

Tiggelaar

b

,

J.W.

Berenschot

c

,

J.G.E.

Gardeniers

c

,

G.R.B.E.

Römer

a

a Chair of Laser Processing, Department of Mechanics of Solids, Surfaces & Systems (MS3), Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands

b MESA + NanoLab cleanroom, MESA + Institute, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands

c Mesoscale Chemical Systems, MESA + Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, The Netherlands

a

b

s

t

r

a

c

t

Thispaperanalyzeslaserandetchingparameterstofabricateopenandcontinuousmicrochannelsandstacksofsuchmicrochannelsinthebulkofcrystallinesapphire (𝛼-Al2O3).Thestructuresareproducedusingatwo-stepmethodconsistingoflaserirradiationandselectiveetching.Infraredfemtosecondlaserpulsesarefocused inthebulktolocallyrenderthecrystallinematerialintoamorphous.Theamorphousmaterialis,then,selectivelyetchedinhydrofluoricacid.Amorphoussapphire showsahighetchingselectivityincomparisontoitscrystallinestate,whichmakesthismaterialveryattractiveforausewiththistechnique.However,someofits propertiesmaketheprocessingchallenging,especiallyduringthelaser-inducedamorphizationphase.Thispaperstudiestheeffectoflaserparametersbya step-by-stepapproachtofabricatelongstructures(longestdimensionsuptomillimeters)ofdifferentshapesinsidethebulkofsapphire.Theminimumcross-sectional dimensionsoftheresultingstructures(microchannels)varyfromfewhundredsofnanometersforthesmallestchannelstotensofmicrometersforthelargeststacks ofmicrochannels.Theeffectofthevariationofrepetitionrate,pulseenergyandchannel-to-channeldistanceonthemicrochannelsandstacksofmicrochannelsis studied.SEMmicrographsofpolishedcross-sectionsareusedforperformingaquantitativeandqualitativeanalysisofthemorphologyofthestructuresafterlaser irradiationand,subsequently,afterselectivewetchemicaletching.

1. Introduction

Crystalline sapphire (𝛼-Al2O3) is nowadays used as construction

componentorbase materialin many sectorsof scienceand technol-ogy.Thehardnessofsapphire(9ontheMohsscale[1])andits trans-parencyinthevisiblespectrum(from450nmto2000nm[2]),together withotherphysicalandchemicalpropertiesmakethematerialsuitable inmanyapplicationsinthefieldsofsemiconductors(particularlywith highefficiencyGalliumNitrideLEDs[3–10]),andinphotonicsin gen-eral[11–14].

Processingofsapphirehasbeendemonstratedusingdifferent meth-ods:directlaserwriting[15,16],mechanicalsawing[17],dry(plasma etching[18–20])andwetetching[21–23].Inthismanuscriptwestudy atwo-stepmethodconsistingoflaserirradiationofcrystallinesapphire withconsequentmodificationoftheexposedmaterialintoamorphized materialandsuccessiveselectiveremovalofthelatterbywetetching.

Duetothetransparencyofsapphire,thelaserbeamcanbefocused insidethebulk.Iffemtosecondorpicosecondlaserpulsesareusedwith intensitiesintheorderof1013–1014W/cm2[24–26]absorbedlaser

en-ergy[27]leadstotheamorphizationofthecrystallinesapphire. Amor-phoussapphireisselectivelyetchablebyhydrofluoricacid(HF)ata105

fasterratethancrystalline[24–26,28–31].Ifthematerialisexposedto several,overlappinglaserpulses,itispossibletocreateregionsand vol-umesofamorphizedmaterial.

Correspondingauthor.

E-mailaddress:l.capuano@utwente.nl(L.Capuano).

Fig.1(a)showsacross-sectionalmodelofasinglemicrochannelin thebulkofsapphire,whichformsthetargetedbasicshapeforthisstudy. Suchstructurescanbeexploitedfor,e.g.microfluidicdevices– inthe form ofmillimeterlonghollowmicrochannels.Morecomplexshapes canbecreatedbysuperpositionofmicrochannels.

However,whenlaserpulsesaregeometricallyoverlappingwiththe aimtoformlargeamorphizedstructures– suchasone-dimensional mod-ifiedlines(madebyamorphousmaterial, beforeetching)– aseriesof phenomenamayaffecttheformationandmorphologyoftheamorphous sapphire.Thelatter,inturn,affectsthesolubilityoftheformedmaterial. Infact, publicationson etchedchannels in sapphire,often report cross-sectionsin which,afterthewetchemical etching,theobtained structureisnotcompletelyhollow[14,24,32,33].Thatis,inthese struc-tureshollow/openregions,whereamorphizedsapphireisdissolved,can befound,aswellascrystalline/unetchedregions.Theselatterregions canbecharacterizedbyseriesofparallelnanochannels,seeFig.1(b),or byadiscontinuedandirregularstructuresFig.1(c).In2008,Juodkazis etal.[32]studiedthisphenomenonandshowedthatoverlappingsingle pulsemodificationscausesrecrystallizationoftheamorphizedmaterial, which makesitnon-etchable byanacidlike HF.Ontheotherhand, Gottmannetal.[24]showedthechangeinmorphologyofcross-sections ofchannelsobtainedwiththismethod,andfoundthattheresultsoflaser irradiationandwetetchingdependsmainlyonlaserparametersand fo-cusingconditions.Morespecifically,theauthorsshowedthat,withina

https://doi.org/10.1016/j.optlaseng.2020.106114

Received21January2020;Receivedinrevisedform22March2020;Accepted29March2020 Availableonline30April2020

(2)

rangeofparameters(mainlynumericalapertureandenergyperpulse) thecross-sectionofchannelseithershowaseriesofamorphizedparallel nanochannels(Fig.1(b)),orhollowchannels(Fig.1(a)).

BothJuodkazisetal.[32]andGottmannetal.[24]studiedtheeffect ofonlyalimitednumberofprocessingparameters.Despitetheseresults, untilnow,awell-ordered studyregardingthemainfactorsplayinga roleonthefinalmorphologyoftheirradiatedlinesandotherstructures (formedbyoverlappinglines)inthebulkofsapphireislackinginthe literature.Awiderinvestigationis needed,infact,tounderstandthe problemandhaveageneralviewofwhichspecificconditionsdetermine thefinalshapeandappearanceandhowtotunethesettingstoobtain exactanddistincttypesofchannels.

2. Experimentalset-upandanalysistools

Fig.2showsaschematicoftheset-upusedforthelaserirradiation experimentspresentedinthiswork.

AKMLabsY-Fifemtosecondlasersourcewasused, whichemitsa linearlypolarizedlaserbeamatacentralwavelengthof𝜆 =1030nm. Thepulsedurationofthissourceis230fs,measuredwithan autocorre-lator(APEBerlinPulseCheck,Germany).Heattransmissionphenomena insidethelatticeofsapphireoccuronatimescaleintheorderoftens ofpicoseconds[34].Hence,theselectedultrashortpulseduration lim-itstheheattransmissioninsidethesampleduringthelaserpulse.The spatialdistributionofthelaserbeamisnearlyGaussian(M2<1.2).

Sincethelasersourcedoesnotoffertheoptionofchangingthe repe-titionratetolessthan1MHz,anelectro-opticmodulator(EOM,Model 360–80byConoptics,USA)ismountedafterthelasersourceforpulse picking.Abeamattenuator(UltrafastVersion,Altechna,Lithuania)is usedtosetthepulseenergyof thelaserpulses.Amicroscope objec-tive(11,101,666,LeicaMicrosystems,Germany,NA=0.7)isusedto focusthebeamtoaspotofabout0.9μmdiameter(calculated).The microscopeobjectiveismountedonalinearstage(ATS100,Aerotech USA),whichmovesthelensinthez-direction,allowingthefocalspot ofthelaserbeamtobepositionedrelativetothesurfaceofthesample. Thesampleisfixedwithavacuumchuckonxy-stages(ALS130-150, AerotechUSA).Themicroscopeobjectiveisalsousedasmagnifying el-ementforimaging;thatis,thelightreflectedbythesamplepassesagain throughtheobjectiveandatubelenstoarrivefinallyonaCMOScamera (DCC1545,Thorlabs,USA).Thisalignmentfacilitatesthepositioningof thefocalspotinthebulk(z-direction)ofthesampleaswellasinthe xy-plane.Italsoallowstoobservetheprogressandqualityofthe irra-diationduringmachining.

Afterirradiation,thesamplesareinspectedusingaKeyenceVHX 5000(Japan)microscopeforopticalandpolarizedmicroscopy,aswell as using a Scanning Electron Microscope (SEM, JEOL JSM 7200F, Japan).AfterHF-etching,samplesareanalyzedatthesamepositions asafterirradiation.

3. Materialsandmethods 3.1. Materials

Circularsapphirewafers(2inchesindiameter)withathicknessof 430μmandcrystalorientation(0001),purchasedfromCrystechGmbH (Germany),wereused.Thecircularsampleswerecutintorectangularly shaped(ofvarioussizes)stripsforeasierhandling.

Thewetchemicaletchant,hydrofluoricacidaqueoussolution50% (BASF,Germany)wasusedatroomtemperature.

3.2. Methods

Toinvestigateonedirectionalstructures,thesampleismovedinone direction(xoryinFig.3),whileexposingthesampletosingle femtosec-ondlaser.Thisresultsinamodifiedline/track,seeFig.3(a).

Thelaserbeamisfocusedinsidethebulkofsapphireatabout50μm belowthetopsurfaceofaspecimen.Thevelocityvofthestageiskept constantat1mm/s.Byvaryingthepulserepetitionrateofthelaser source,thegeometricaloverlapbetweenthelaserpulsescanbevaried. Inordertoproducestacksoflines,asisshowninFig.3(b),the ap-proachforsinglelinesisappliedrepeatedly.Thatis,stacksoflinesare producedbyoverlappingsinglemodifiedparalleltracks.The geomet-ricaloverlapofadjacenttracksislimitedbytheminimalincremental stepofthexystage,whichequalsabout50nm.Sincethesmallest cross-sectionaldimensionisabout600nm,itispossibletovarythelateral ge-ometricaloverlapbetweenadjacentlinesfrom90%downtoseparated lines(nooverlap).

Thegeometricaloverlapisdefinedasthepercentageoftheoverlap ofdiametersofadjacentpulsesandiscalculatedas:

OL = ( 1− 𝑣 𝑓⋅ 𝐷 ) × 100%

WherevisthescanningspeedoftheXYstage,fthepulserepetitionrate ofthelasersourceandDisthe(calculated)diameterofthefocalspot.

Alltheline-basedstructuresareirradiatedclosetoanedgeofthe specimenforeasyinspection.Table1providesanoverviewoftherange oftheotherlaserparameters.

(3)

Fig.2. Schematicofthesetupusedduringthelaser irra-diationphaseoftheexperiments.

Fig.3.(a)Singlelinesareproducedbyexposingthe sampletolaserpulses,whiletranslatingthesampleat aconstantvelocityofv=1mm/s.(b)Astackof micro-linesiscreatedbylaterallyoverlappingsinglelines.

Table1

Setofexperimentalparameters.

Laser Polarization // Parallel to the direction of irradiation ⊥ Perpendicular to the direction of irradiation

Pulse repetition rate 0.001 MHz, 0.010 MHz, 0.050 MHz, 0.100 MHz, 0.200 MHz, 0.500 MHz, 1 MHz, 5 MHz, 10 MHz, 15 MHz

Laser pulse energy 94.5 nJ, 234 nJ, 457 nJ for repetition rates: 0.001 MHz ≤ f ≤ 1 MHz 18.9 nJ, 46.8 nJ, 91.4 nJ for repetition rates: 5 MHz ≤ f ≤ 15 MHz No. of stacked lines 2, 4, 8, 16, 32, 64, 128, 256

Cross-sectionsofthestructureswereobtainedbygrindingthe sam-plealongthedirectionshowninFig.4,andremovingenoughsapphire toexposetheamorphousmaterial.Subsequently,foreaseofinspection ofthecross-sections,thesamplewaspolishedtoopticalquality(average roughnessRa<5nm).Grindingandpolishingwerecarriedoutusinga

Tegramin(Struers,Netherlands)polishingapparatususingsilicon

car-bidepapersforthegrindinganddiamondpastesforthepolishing,with progressivefinersteps.

Afterpolishing,thecross-sectionofeachlineisinspectedbySEM and analyzed. Afterwards, the irradiated samples are immersed in 50%HFforabout2htodissolvetheamorphousmaterial.After rins-ingin demineralizedwateranddrying,SEMinspection ofthe

(4)

cross-Fig.4.Opticalmicroscopyimage(topview)ofchannelsandstacksofchannels obtainedafterirradiationandetchinginHFatroomtemperatureforabout2h. Toexposethe(amorphized)channelsandstudythecross-sections,samplesare grindedandpolished.

sectionsofformedmicrochannels(andstacks),atthesamelocations,is performed.

Thelinesandstacksoflinesareirradiateduponvaryingthe polar-izationoftheincominglaserbeam,therepetitionrateofthelaserwith whichthepulsesaredelivered,theenergyperpulseandthenumberof overlappinglinesincaseofstacks(seeTable1)

4. Resultsanddiscussion

Fig.5showsthegeneralfeaturesofatypicalcross-sectionbefore(i.e. line)andafter(i.e.channel)thewetetchingstep.

Ascanbeobservedfromthisfigure,theshapeofthecross-section ofthemodifiedlineafterlaserirradiationgenerallyfollowstheoriginal shapeofthelaserfocalspot.InFig.5(a)amorphizedsapphireappears darkerintheSEMmicrographsthancrystallinesapphire.Aswas men-tionedinSection1,theamorphousregionisnothomogeneousinmany cases.Thatis,thelaser-affectedvolumeshowsbothamorphousregions

Fig.6.SEMmicrographofacross-sectionofasinglemodifiedlineobtained usingapulseenergyEp=91.4nJandapulserepetitionrateoff=15MHz.The irradiationwasperformedalongthedirectionperpendiculartothepolarization ofthelaserbeam.Atahighenergyperpulseandhighrepetitionratesavoidcan appearnearthetopofthelaser-affectedvolume.Thelaserradiatedfromtopto bottomofthepicture.Thevelocityofthestagewasv=1mm/s,thegeometrical pulsetopulseoverlap(calculated)OL=99.999%.

andcrystallineregions.Forthisreason,thecross-sectionsofchannels obtainedaftertheetchinginFig.5(b)fallinthemodelinFig.1(c).

The“microexplosions” causedbytheabsorptionofthelaserenergy [35]inaveryshorttimearecausingcrackingofthecrystallinesapphire. Aswillbeshowninthenextparagraphs,mostofthemodifiedlinesare surroundedbycrackswhichmaychangeinlengthfromfewhundreds ofnanometersuptomillimeters,dependingmainlyonthepulseenergy andtherepetitionrate.Thesecracksarenotmodifiedinsizeand mor-phologybytheetchingprocess.

Moreover,athighrepetitionrates(typically15MHz)andhighpulse energies(typically91.4nJ),thepresenceofsmallvoidsmaybeobserved inthecross-sectionsofthelines(i.e.priortoetching)aswell,seeFig.6.

Fig.5.SEMmicrographsofatypicalcross-sectionof asinglemodifiedline(a)afterlaserirradiationata laserpulseenergyof457nJandarepetitionrateof 0.010MHzand(b)after2hetchinginhydrofluoric acidatroom temperature.The irradiationwas per-formedalong thedirection paralleltothe polariza-tionofthelaserbeam.Thelaserradiatesfromtopto bottomofthepicture.Thevelocityofthestagewas

v=1mm/s,thegeometricalpulsetopulseoverlap (calculated)OL=90.000%.

(5)

Fig.7.SEMmicrographs(toprow)andzoomedSEMmicrographs(bottomrow)ofcross-sectionsofmodifiedlines(non-etched)afterirradiationobtainedusing: (a)f=0.1MHzandEp=94.5nJ,(b)1MHzandEp=94.5nJ,(c)5MHzandEp=91.4nJ,(d)10MHzandEp=91.4nJ.Theamorphizedparallelnanochannels increaseinsizeandnumberwithincreasingpulserepetitionrate.Inallthepicturesthesampleisirradiatedalongthedirectionperpendiculartothepolarizationof thelaser.Thelaserradiatedfromtoptobottomofthepicture.Thevelocityofthestagewasv=1mm/s,thegeometricalpulsetopulseoverlap(calculated)varied fromOL=99.000%forf=0.100MHztoOL=99.990%for10MHz.

Asmentioned,thelinearvelocityoftheXYstagesmovingthe sam-plewas 1mm/s, whereas thepulse repetitionratewas varied from 0.001MHzto15MHz,correspondingrespectivelytogeometricalpulse topulseoverlapsrangingfrom0%(completelyseparatedsingle modifi-cations)to99.999%.

4.1. Structuresparallelorperpendiculartothepolarizationofthelaser light

Thecross-sectionalshapeoftheirradiatedandetchedstructuresis affectedbytheanglebetweenthe(linear)polarizationdirectionofthe laserradiation[24,28,36–38]andthedirectionofirradiation(direction alongwhichthestagemoves).

Hnatovskyetal.[38]demonstratedthatmodifyingthebulkoffused silicausinglinearlypolarizedlaserpulsesresultsinperiodicstructures orientedinadirectionperpendiculartotheirradiationdirection.

Tayloretal.[39]explainedtheformation,duringprocessing,of pe-riodicstructuresperpendiculartothepolarizationofthelaserradiation, usingthetransientnanoplasmonicsmodel.Thismodeltheorizesthe for-mationofionizationhotspotsduringtheirradiationbyultrashortlaser pulses,whicheventuallyinducesplasma.Thesehotspotsmayleadtoa preferentiallocalionizationofthematerial.Inparticular,field enhance-mentontheboundaryofthegeneratedionizedspotsfacilitatesthe gen-erationofplasmainthedirectionperpendiculartothepolarizationof thelaserlight.

Tostudytheeffectoftheorientationofthepolarizationonthe irra-diatedlinesandetchedchannels,structureswereproducedbothparallel andperpendiculartothepolarizationofthelaserradiation.

Fig. 8.SEM micrographof across-sectionof a singleirradiatedline (non-etched)obtainedusingEp=91.4nJandf=15MHzalongthedirection perpen-diculartothepolarizationofthelaserbeambeforeetching.Thelaserradiates fromtoptobottomofthepicture.Thevelocityofthestagewasv=1mm/s,the geometricalpulsetopulseoverlap(calculated)OL=99.999%.

Ifthelaserpolarizationisperpendiculartothescan-directionofthe stage, thepresenceof parallelnanochannels isobserved in thefocal region(Fig.1(b)),whicharenotobservediftheirradiationdirectionis

(6)

Fig.9. SEMmicrographsofcross-sectionsafterirradiationoflinesandafteretchingofchannelsobtainedatdifferentrepetitionrates:(a)f=0.001MHz,(b) 0.010MHz,(c)0.050MHz,(d)0.100MHz,(e)0.200MHz,(f)0.500MHz,(g)1MHz,(h)5MHz,(i)10MHz,(l)15MHz.Thelaserradiatedthesamplesfromtop tobottomofthepictures.Thevelocityofthestagewasv=1mm/s,thegeometricalpulsetopulseoverlap(calculated)variedfromcompletelydetachedpulsesat

(7)

Fig.10. SEMmicrographsofcross-sectionsafterirradiation oflinesandafteretchingofchannelsobtainedusingapulse repetitionrateoff=1MHzatdifferentenergiesperpulse: (a)Ep=457nJ,(b)234nJ,(c)94,5nJ.Thelaserradiated fromtoptobottomofthepicture.Thevelocityofthestagewas

v=1mm/s,thegeometricalpulsetopulseoverlap(calculated) OL=99.900%.

paralleltothepolarizationdirection.Theseregularamorphizedparallel nanolinesareobservedforpulserepetitionratesover0.1MHzandare morepronouncedwhenarepetitionrateofatleast1MHzisapplied, seeFig.7.

Upon increasingtherepetition rate,anincrease in both horizon-tal andvertical dimension of the cross sections and in the number ofnanolinesperareaisobserved.However,atapulserepetitionrate of 15 MHz,a circularshape is observed frequently,see Fig.8. This

spherical shape impedes the propagationof the focused laser beam deeperintothesample.Thisphenomenonwillbeexplainedindetailin Section4.2.

Objectiveofthispaperistoformhollow/openmicrochannelsand stacksofhollow/openmicrochannels.Hence,theoriginandgrowthof parallelnanolines/nanochannelsareoutofthescopeofthisstudy.For thisreason,inthenextsections,onlyresultsobtainedwiththe irradia-tiondirectionparalleltothepolarizationofthelaserarediscussed.

(8)

Fig.11. Polarizedopticalmicroscopyimage(topview)ofchannels(dark)andstacksofchannels(dark),surroundedbystressfields(colored).Thechannelswere obtainedafterirradiationandetchinginHFatroomtemperatureforabout2h.Thenumberofstackedchannelsrangefrom1(extremeleft)to128(extremeright). Thechannelsweremadeusingapulserepetitionrateof0.200MHzandapulseenergyof94,5nJ.Thevelocityofthestagewasv=1mm/s,thegeometricalpulseto pulseoverlap(calculated)OL=99.500%.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

Fig.12. SEMmicrographsofcross-sectionsafter irra-diationofa stackof 256lines(a)andthestructure leftafteretching(b)obtainedusingarepetitionrate of0.100MHzat94,5nJ.Acracktowardsthecenter ofthestackoflinesishavinga“shieldingeffect” on thematerialbelowresultinginlocallynoformation ofamorphoussapphire.(c)isanopticalmicroscopy pictureintopviewofthesameetchedchannel.The laserradiatedfromtoptobottomofthepictures(a) and(b).Foreachline/channelthevelocityofthestage wasv=1mm/s,thegeometricalpulsetopulseoverlap (calculated)OL=99.000%.

4.2. Effectofpulserepetitionrateonlinesandstacksoflines

Fig.9showstheeffectsofpulserepetitionrateonthecross-sections ofsinglelines(onlyirradiation)andchannels(afterHF-etchingoflines). Sincethevelocityof thestagesis constantat1mm/s,the geometri-calpitchbetweenthelaserpulseschangesfromsingleisolatedpulses

(atf=0.001MHz)toageometricaloverlapof99.999%betweenlaser pulses(atf=15MHz).

Atf=0.001MHz,thelaserpulsesarenotgeometricallyoverlapping. ThisisalsoreflectedinFig.9(a),whereaclearcross-sectionoftheline inthefocalregioncannotbeidentified.At0.010MHzthegeometrical overlapbetweenthelaserpulsesisover80%(overlapcalculatedwhen

(9)

Fig.13. SEMmicrographofacross-sectionbeforeetchingofastackof2 irradi-atedlines(non-etched)obtainedusingapulseenergyof94,5nJandarepetition rateof0.200MHz.Themismatchinrefractiveindexesbetweencrystallineand amorphoussapphireiscausingaseparationbetweenline1(thefirsttobe ir-radiated)andline2.Thelaserradiatesfromtoptobottomofthepicture.The velocityofthestagewasv=1mm/s,thegeometricalpulsetopulseoverlap (calculated)OL=99.500%.

anenergyperpulseof94,5nJwasusedwithaneffectiveminimal cross-sectionaldimensionof0.6μmbeforeandafteretching).However,when arepetitionratebelowf=0.100MHzisused(Fig.9(b)and(c)),the obtainedirradiatedlinesshowirregularcross-sections-i.e.amorphous sapphirealternateswithcrystallinetoformanirregularpatternsuchas theoneseeninFig.1(c).

Thisphenomenonmaybe explainedby recrystallizationof previ-ouslyamorphizedmaterial.Thatis,evenafterthefirstlaserpulse,each subsequent,overlappinglaserpulseisirradiatingavolumeofboth crys-tallineandamorphizedmaterial.AswasreportedbyJuodkazisand Mi-sawa[32],thismayrecrystallizepartsoftheamorphizedmaterial, leav-ingitnon-solublebytheetchant.

Anotherhypothesisisthattheoverlapbetweenpulsesisnot suffi-cienttocausehollowchannelswithaconstantwidth,becausethe mate-rialamorphizedbypreviouslaserpulsesisopticallydistortingthe prop-agationandprofileofthelaserbeam.Thiseffectwillbediscussedmore indetailinSection4.4.

Forpulserepetitionratesrangingfromf=0.100MHzto1MHzthe cross-sectionsinFig.9(d)–(g)showopenchannelswithaconstant cross-sectionalongtheirlength.Thesearethetargetedhollowmicrochannels showninFig.1(a).Inthesefigures,thecross-sectionalwidthincreases from0.6μmatf=0.100MHzto1μmat1MHz.

Fig.9(h),(i),(l)showsthat,forpulserepetitionratesof5MHzand higher,thecross-sectionsoflines/channelsrevealadisruptedand frag-mentedmorphology.Attheserepetitionrateslargecrackshaveastrong effect,detrimentalonthepropagationandfluenceprofileoftheincident laserbeam,and,inturn,ontheamorphizationofthematerial.

Moreover,atf=15MHz,thelaser-affectedregionsshowa(nearly) circularshapenear thetopof thelaseraffectedvolumeandsmaller featuresbelowit,seeFig.9(l),aswellasFig.8.Thisphenomenoncan possiblybeassociatedwiththefindingsof Gamalyetal.[40].These authorsreportedtheformationofplasmaattheapexofthefocalspot duringtheionizationofthematerialbothathighrepetitionrateandat highpulseenergies.Thisplasmais,mostlikely,preventingexposureof materialbelowittothelaserradiation.

4.3. Effectofenergyperpulse

Forpulserepetitionratesup to1MHz,thesamplewasirradiated usingthreepulseenergies:94.5nJ,234nJ,457nJ.Belowthesmallest pulseenergy,thematerialisnotaffectedbythelaser(atthementioned repetitionrates),whereasatthehighestpulseenergyitisnotpossible toirradiatesapphirewithouttheformationofcrackssolargethatcause thebreakingofthespecimen.Forpulserepetitionratesoff=5MHz, 10MHzand15MHzlowerpulseenergieswereappliedbecauseofthe powerlimitationsofthelasersource.Atthesepulserepetitionrates ex-perimentswereperformedatEp=18.9nJ,46.8nJand91.4nJ.

Fig.10shows theeffect ofthepulseenergyon thecross-sections ofirradiatedlinesandetchedchannels.Theshapeoftheamorphized regiondeviatesfromtheshapeofthefocalspotandthecross-sections showmultiplefoci,withincreasingpulseenergy.Thelattercanbe as-sociatedwithKerr-inducedself-focusing.Self-focusinginducedbythe electro-opticKerreffectisachangeoftherefractiveindexcausedby anappliedstrongelectricalfield,inthiscasethelaserradiation.This changeintherefractiveindexcausesthefocalspottoelongate.Ifthe focusingduetotheKerreffectiscounterbalancedbyadefocusingeffect duetothepresenceofplasmainthefocalspot[40],whichlowersthe refractiveindex,thismayresultinspatialfocusing/defocusing (multi-foci)alongthepropagationaxisofthelaserbeam.Thepowerthreshold PcritabovewhichKerreffectistriggeredcanbeexpressedas[35]: 𝑃𝑐𝑟𝑖𝑡=

𝜆2 0

2𝜋𝑛0𝑛2

where𝜆0denotesthelaserwavelength,n0thelinearrefractiveindex

(n0=1.755at1030nm[41])ofthematerialandn2thenonlinear

re-fractiveindex(n2=3⋅10−16 cm2/W[42]).Hence,P

crit ≈3.02⋅106W,

whichhasthesameorderofmagnitudeoftheappliedpeakpowersin thiswork,especiallyatEp=234nJand457nJ.Thisconfirmsthe

possi-bleoccurrenceofself-focusing/multifociattheselevelsofpulseenergy. 4.4. Overlappingofthemodifiedlines

Foreachrepetitionrateandpulseenergy,singlelineswere over-lappedlaterallyforproducingstacks.Thenumberofstackedlinesper structureproducedis2n,withn=1to8(seeTable1).However,athigh

pulseenergies,itisoftennotpossibletogoabove8–16linesbecauseof severecrackingthathampersproperirradiation.

Apitchof50nm(correspondingtoanoverlapof90%)asthe lat-eralshiftbetweentheadjacentlinesisused.Atlowpulseenergies,itis possibletocreatestacksofupto256lines,althoughotherfactorsare influencingtheformationoffullyempty(withnoresidualcrystalline materialleft)stacksofmicrochannels.

Accumulatedstressinsidetransparentmaterialsisknowntocause birefringence[43,44].Stressinducedbylaserprocessingcanfacilitate theetchingofthematerialitself[45].Inthiscase,though,thedifference inrefractiveindicesbetweenunprocessedcrystalline,stress-affectedand amorphousmaterialwillmostlikelycauseadistortionoftheintensity profileoftheincidentlaserbeam.Fig.11showstheetchedchannels surroundedbystressinthecrystallinesapphire(andconsequent bire-fringence)madevisible bypolarizedlight microscopy.Althoughthis imagedoesnotprovidequantitativeresults,itcanbeconcludedthat thesurroundingstressincreasessignificantlywithincreasingnumberof channels.

Cracksadditionallyinterferewiththeformationofamorphous ma-terial.Crackedmaterial,infact,iscomposedofnormalcrystalline sap-phire,voidsandstressedcrystallinesapphire.Italsohas,therefore,a mixofrefractiveindices,whichareaffectingthefocusingofthelaser beam.Thisis,inmostcases,havingashieldingeffectonthecrystalline material,whichisdirectlybelowthecrack,thuspreventingits amor-phization.

Fig.12 showsanexample ofthis:acrack occurringatabout the centerofthestacksofmicrolineswas“shielding” thematerial

(10)

under-Fig.14. SEMmicrographsofcross-sectionsafterirradiationofstacksoflinesandthestructuresleftafteretchingobtainedatarepetitionrateof0.500MHzanda pulseenergyof94,5nJ.Thenumberofsinglestructuresoverlappedisinorder:(a)1,(b)2,(c)4,(d)8,(e)16,(f)32,(g)64,(h)128.Thelaserradiatedfromtop tobottomofthepictures.Thevelocityofthestagewasv=1mm/s,thegeometricalpulsetopulseoverlap(calculated)OL=99.800%.

neath:thelinesirradiatedafter/nexttothelineduringwhichthecrack wasgeneratedexhibitasmallercross-sectionwhich,inturn,causesan “interruption” inthestructureitself.

Fig.12(c)shows anopticalmicroscopy pictureofthesame chan-nel(topview,afteretching)showingthatthecrack,whichpropagated longitudinally,maintainedtheshieldingeffectforalmosttheentire re-mainderoftheirradiatedstack.

Giventhestep resolutionof 50 nmof thesetupandbecausethe minimalcross-sectionaldimensionofsinglelinescomposingthestack is in theorder of few hundred nanometers,itshould be possible to obtainstacksofmicrochannelswithasingleanduninterrupted cross-section.However,amorphizedsapphireofapreviouslyirradiatedline hasalowerrefractiveindexcomparedtothecrystallinesapphire[46]. Thisindexdifferencehasadeflectingeffectontheincomingbeamthat irradiatesthefollowingline.Theresultisthatsubsequentlinesareoften

(11)

irradiatedataslightlytiltedangle,whichyieldsaseparationbetween adjacentlines(Fig.13).

Finally,inFig.14anoverviewispresentedofaseriesofstacksof microchannelsproducedwitharepetitionrateof0.500MHzandapulse energyEp=94.5nJ,startingfromasinglechannel(Fig.14(a))upto 256overlappingchannels(Fig.14(h)).Theshieldingeffectcausedby thecracksisprominentinFig.14(g)and(h),whiletheseparationofthe channelscausedbymismatchoftherefractiveindicesisvisiblestarting from(d)andinvaryingdegreesforeveryothercase.Overall,theresults forexperiments withmorethan64 linesshow thepresenceoflarge cracks.

5. Conclusions

Astudyhasbeenperformedonthefabricationofmicrochannelsand stacksofmicrochannelsinsidethebulkofsapphire.Adetailedstep-by stepapproachregardingtheformationofsuchchannelswithan anal-ysisofthemainfactorsplayingaroleonthefinalmorphologywas,to thebestofourknowledge,missing.Thestudyincludedtheeffectsof polarizationof thelight,repetitionrate,pulseenergyandnumberof stackedlinesonthemorphologyandappearanceofthestructuresafter irradiationandwetchemicaletching.Themainresultsfoundarethe following:

Thefirstpartoftheinvestigationregardedthedirectionofthe irra-diation:parallelorperpendiculartothepolarizationofthelight.It wasfoundthat,ifthesampleisirradiatedalongthedirection per-pendiculartothepolarizationofthelight,theirradiatedlinesdonot showasmoothsingleamorphizedcross-section,butratheraseriesof verticalamorphizedparallelnanolinespropagatingalongthewhole lengthofthechannel.Suchstructureswerenotinlinewiththe ob-jectiveofthestudy;therefore,nextexperimentswererestrictedto irradiationparalleltothelightpolarization.

Withthisarrangement,thenextphasecomprisedstudyingtheeffect ofrepetitionrateontheobtainedstructures.Itwasfoundthatthe idealwindowoflaserirradiationisbetween0.100MHzand1MHz. Belowthisrangethestructuresdonotshowasingleandconstant cross-section,butfragmented.Uponusingarepetitionratehigher thanthisrange,themodifiedlinesalsoshowirregularcross-sections. Infact,theyaredisruptedandoftencontainacircularshapeontopof thefocalregionwhichisshieldingthelower/deeperlocatedmaterial andpreventingittobemodified.

Theeffectofpulseenergywasinvestigated,anditwasfoundthat, ifapulseenergyofmorethan234nJforpulserepetitionratesof (f=0.001to1MHz)isused,thefocusissplitinmultiplefoci.The splittingismostprobablycausedbytheKerr-effectand,asa con-sequence,thecross-sectionsofthechannelsafteretchingarenotas targeted.

Finally,stacksof microlineswerestudiedbyvaryingthenumber ofsinglelinescomposingthem.Ingeneral,thepresenceofcracks preventtheformationofhollowstacksofmicrochannelsandlimits itssizeto64laterallyoverlappingchannels.Moreoverapossible non-sufficientoverlapping(technicallylimitedbythesetup)often causesseparationofadjacentchannels.

This work demonstrates the possibility of controlling the cross-sectionalshapeof channelsobtainedin sapphireusinga double-step processingtechniquebasedonfemtosecondpulsedlaserirradiationand selectiveetchinginhydrofluoricacid.Itisbelievedthatstructureswith ahollow,continuousandconstant(alongthelengthofthestructure) cross-sectioncanbeusedformicrofluidicapplications.

DeclarationofCompetingInterest None.

CRediTauthorshipcontributionstatement

L. Capuano:Conceptualization,Methodology,Validation, Investi-gation,Datacuration,Formalanalysis,Writing-originaldraft,Writing -review& editing,Visualization.R.M.Tiggelaar:Conceptualization, Methodology, Validation, Resources,Writing -review & editing, Su-pervision.J.W.Berenschot:Conceptualization,Methodology, Valida-tion,Resources,Writing-review&editing,Supervision.J.G.E. Garde-niers:Conceptualization,Methodology,Validation,Resources,Writing -review& editing,Supervision.G.R.B.E. Römer:Conceptualization, Methodology,Validation,Resources,Writing-review&editing, Super-vision,Projectadministration,Fundingacquisition.

Acknowledgements

Theprojectleadingtothispublicationhasreceivedfundingfrom theEuropeanUnion’sHorizon2020researchandinnovationprogram undertheMarieSkłodowska-CuriegrantagreementNo.675063. References

[1] Dobrovinskaya ER, Lytvynov LA, Pishchik V. Application of Sapphire. In: Sapphire. Boston, MAUS: Springer; 2009. p. 95. doi: 10.1007/978-0-387-85695-7_1 . [2] Kyocera Single crystal sapphire datasheet - Kyocera. Single Cryst Sapphire - Kyocera

2011. doi: 10.1063/1.3050841 .

[3] Lei T, Ludwig KF, Moustakas TD. Heteroepitaxy, polymorphism, and fault- ing in GaN thin films on silicon and sapphire substrates. J Appl Phys 1993. doi: 10.1063/1.354414 .

[4] Kelly D, Brindle C, Kemerling C, Stuber M. The state-of-the-art of silicon-on-sapphire CMOS RF switches. Tech Dig - IEEE Compd Semicond Integr Circuit Symp CSIC 2005. doi: 10.1109/CSICS.2005.1531812 .

[5] Yoshida S, Misawa S, Gonda S. Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN- coated sapphire substrates. Appl Phys Lett 1983;42:427–9. doi: 10.1063/1.93952 . [6] Wong WS, Sands T, Cheung NW. Damage-free separation of GaN thin films from

sapphire substrates. Appl Phys Lett 1998. doi: 10.1063/1.120816 .

[7] Craven MD, Lim SH, Wu F, Speck JS, Denbaars SP. Structural characterization of nonpolar (112 ̄0) a-plane GaN thin films grown on (11 ̄02) r-plane sapphire. Appl Phys Lett 2002. doi: 10.1063/1.1493220 .

[8] Wu ZH, Fischer AM, Ponce FA, Bastek B, Christen J, Wernicke T, et al. Struc- tural and optical properties of nonpolar GaN thin films. Appl Phys Lett 2008. doi: 10.1063/1.2918834 .

[9] Halstuch A, Westreich O, Sicron N, Ishaaya AA. Femtosecond laser inscription of Bragg gratings on a thin GaN film grown on a sapphire substrate. Opt Lasers Eng 2018. doi: 10.1016/j.optlaseng.2018.05.006 .

[10] Reklaitis I, Grinys T, Toma š iunas R, Puod ž iunas T, Ma ž ule L, Sirutkaitis V, et al. A new geometrical approach for rapid led processing by using femtosecond laser. Opt Lasers Eng 2015. doi: 10.1016/j.optlaseng.2015.05.002 .

[11] Singh N, Hudson DD, Eggleton BJ. Silicon-on-sapphire pillar waveguides for Mid-IR supercontinuum generation. Opt Express 2015. doi: 10.1364/oe.23.017345 . [12] Wang J, Zhou Y, Watkinson M, Gautrot J, Krause S. High-sensitivity light-

addressable potentiometric sensors using silicon on sapphire functionalized with self-assembled organic monolayers. Sensors Actuators, B Chem 2015. doi: 10.1016/j.snb.2014.11.071 .

[13] Lioubtchenko D, Dudorov S, Mallat J, Tuovinen J, Räisänen AV. Low-loss sapphire waveguides for 75-110 GHz frequency range. IEEE Microw Wirel Componen Lett 2001. doi: 10.1109/7260.928929 .

[14] Kaiser M, Kumkar M, Leute R, Schmauch J, Priester R, Kleiner J, et al. Selective etch- ing of ultrafast laser modified sapphire. In: Ra čiukaitis G, Makimura T, Molpeceres C, editors. Laser appl. microelectron. optoelectron. manuf. xxiv. SPIE; 2019. p. 14. doi: 10.1117/12.2509415 .

[15] Kudrius T, Š lekys G, Juodkazis S. Surface-texturing of sapphire by fem- tosecond laser pulses for photonic applications. J Phys D Appl Phys 2010. doi: 10.1088/0022-3727/43/14/145501 .

[16] Shamir A, Ishaaya AA. Large volume ablation of Sapphire with ultra-short laser pulses. Appl Surf Sci 2013;270:763–6. doi: 10.1016/j.apsusc.2013.01.153 . [17] Matsumaru K, Takata A, Ishizaki K. Advanced thin dicing blade for sapphire sub-

strate. Sci Technol Adv Mater 2005;6:120–2. doi: 10.1016/j.stam.2004.11.002 . [18] Park S-H, Jeon H, Sung Y-J, Yeom G-Y. Refractive sapphire microlenses fab-

ricated by chlorine-based inductively coupled plasma etching. Appl Opt 2001. doi: 10.1364/ao.40.003698 .

[19] Zhou S, Liu S. Study on sapphire removal for thin-film LEDs fabrication using CMP and dry etching. Appl Surf Sci 2009. doi: 10.1016/j.apsusc.2009.07.063 . [20] Dutta A, Kinsey N, Saha S, Guler U, Shalaev VM, Boltasseva A. Plasmonic inter-

connects using zirconium nitride. In: Conf. lasers electro-optics. CLEO; 2016. 2016, 2016 .

[21] Wuu DS, Wang WK, Wen KS, Huang SC, Lin SH, Horng RH, et al. Fabrication of pyra- midal patterned sapphire substrates for high-efficiency InGaN-based light emitting diodes. J Electrochem Soc 2006;153:G765–70. doi: 10.1149/1.2209587 .

(12)

[27] Capuano L, de Zeeuw, Römer GRBE D. Towards a numerical model of picosec- ond laser-material interaction in bulk sapphire. J Laser Micro Nanoeng 2018:13. doi: 10.2961/jlmn.2018.03.0005 .

[28] Hörstmann-Jungemann M, Gottmann J, Keggenhoff M. 3D-microstructuring of sapphire using fs-laser irradiation and selective etching. J Laser Micro Nanoeng 2010;5:145–9. doi: 10.2961/jlmn.2010.02.0009 .

[29] Gamaly EG, Juodkazis S, Nishimura K, Misawa H, Luther Davies B. Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation. Phys Rev B 2006;73:214101. doi: 10.1103/PhysRevB.73.214101 . [30] Wortmann D, Gottmann J, Brandt N, Horn-Solle H. Micro- and nanostructures inside

sapphire by fs-laser irradiation and selective etching. In: Conf. quantum electron. laser sci. conf. lasers electro-optics. CLEO/QELS; 2008. 2008 .

[31] Moser R, Ojha N, Kunzer M, Schwarz UT. Sub-surface channels in sapphire made by ultraviolet picosecond laser irradiation and selective etching. Opt Express 2011;19:24738. doi: 10.1364/OE.19.024738 .

[32] Juodkazis S, Misawa H. Laser processing of sapphire by strongly focused femtosec- ond pulses. Appl Phys A Mater Sci Process 2008. doi: 10.1007/s00339-008-4763-0 . [33] Matsuo S, Shichijo Y, Tomita T, Hashimoto S. Laser fabrication of ship- in-a-bottle microstructures in sapphire. J Laser Micro Nanoeng 2007. doi: 10.2961/jlmn.2007.02.0001 .

fabrication in fused silica. Opt Lett 2005. doi: 10.1364/ol.30.001867 .

[39] Taylor R, Hnatovsky C, Simova E. Applications of femtosecond laser induced self- organized planar nanocracks inside fused silica glass. Laser Photonics Rev 2008. doi: 10.1002/lpor.200710031 .

[40] Gamaly EG, Rapp L, Roppo V, Juodkazis S, Rode AV. Generation of high en- ergy density by fs-laser-induced confined microexplosion. New J Phys 2013:15. doi: 10.1088/1367-2630/15/2/025018 .

[41] Malitson IH. Refraction and dispersion of synthetic sapphire. J Opt Soc Am 1962;52:1377. doi: 10.1364/JOSA.52.001377 .

[42] Major A, Yoshino F, Nikolakakos I, Aitchison JS, Smith PWE. Disper- sion of the nonlinear refractive index in sapphire. Opt Lett 2004;29:602. doi: 10.1364/OL.29.000602 .

[43] Fan H, Ryu M, Honda R, Morikawa J, Li ZZ, Wang L, et al. Laser-Inscribed stress- induced birefringence of sapphire. Nanomaterials 2019. doi: 10.3390/nano9101414 . [44] Fernandes LA, Grenier JR, Herman PR, Aitchison JS, Marques PVS. Stress induced birefringence tuning in femtosecond laser fabricated waveguides in fused silica. Opt Express 2012. doi: 10.1364/oe.20.024103 .

[45] Agarwal A, Tomozawa M. Correlation of silica glass properties with the infrared spectra. J Non Cryst Solids 1997. doi: 10.1016/S0022-3093(96)00542-X . [46] Boidin R, Halenkovi č T, Nazabal V, Bene š L, N ěmec P. Pulsed laser deposited alumina

Referenties

GERELATEERDE DOCUMENTEN

Het aanwezig zijn van belemmeringen en de ruimtelijke invulling van beheer leent zich voor evaluatie, waar een grote rol voor GIS is weggelegd.. Voor het gebied van Midden-Delfland

Binnen de mogelijkheden van het huidige project is ervoor gekozen om de relatie met habitats te leggen door de door ons als zodanig gedefinieerde buiten-EHSsoorten voor ons zijn dat

The purpose of this research is to identify the incidence and length of temperature breaks that reefer containers experience within the CTCT leg of the fresh fruit export supply

Nu zijn er wel algemene personeelsnormen die van overheidswege gehanteerd worden (COTG-normen), doch deze hebben alleen betrekking op het aantal bezette bedden en de grootte van

environment, and cleaning staff behaviour can be used to positively influence end-user 159.. perceptions

Hierna zal naar drie casussen gekeken worden om het effect van verschillende mate van antibioticagebruik op de verspreiding van Klebsiella pneumoniae te onderzoeken.. 4.3 Uitbraken

At the department of Pediatric Urology (Wilhelmina Children’s Hospital UMC Utrecht, Utrecht, the Netherlands), he first developed and evaluated the feasibility of a new

The performance of the ML models for the prediction of parking occupancy was better than the state of the art related work in the problem under study, scoring a mean squared