• No results found

Preliminary Study on Enzymatic Degradation of Organosolv Lignin

N/A
N/A
Protected

Academic year: 2021

Share "Preliminary Study on Enzymatic Degradation of Organosolv Lignin"

Copied!
28
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

 

 

 

Bachelor Thesis Chemistry

Preliminary Study on Enzymatic Degradation

of Organosolv Lignin

 

 

by

Laura de Wal  

 

26-06-2017

Student number

10756426

Research institute

Supervisor

Van ’t Hoff Institute for Molecular

Sciences

Prof. dr. ir. Peter Schoenmakers

Research group

Daily supervisor

Analytical Chemistry

Dr. Bert Wouters

(2)

Abstract  

 

Our  dependence  on  fossil  fuel  to  generate  energy  is  causing  an  increasing  concern  as  the  fossil   fuel  stock  is  limited  and  its  use  is  hazardous  for  our  own  environment  due  to  its  relation  with   global   warming.   Since   the   introduction   of   new   technologies   such   as   bio   refineries,   biomass-­‐ based  fuels  present  a  very  promising  alternative  for  fossil  fuels.  Lignin  was  chosen  as  the  subject   of   interest   due   to   its   use   for   bio   fuels.   Additionally   it   represents   one   of   the   richest   sources   of   aromatics,   which   gives   a   promising   perspective   in   future   bio   refinery.   The   exact   structure   of   lignin   is   hard   to   determine,   and   the   depolymerisation   of   lignin   remains   a   challenge.   This   research  project  is  focussed  on  exploring  possibilities  for  enzymatic  degradation  of  Organosolv   lignin,   and   the   study   of   both   undegraded   and   degraded   Organosolv   lignin   through   the   use   of   size-­‐exclusion   (SEC)   and   reversed-­‐phase   (RP)   liquid   chromatography.   The   size-­‐exclusion   analysis  shows  that  Organosolv  lignin  used  in  this  research  are  relatively  small  polymers  with  a   majority   of   a   mass   of   526,9   Da.   In   a   later   stage   of   this   project   the   goal   is   to   make   an   online   method  to  combine  the  degradation  with  two-­‐dimensional  LC  analysis,  for  instance  SEC×RP.  For   this   reason   the   effect   of   tetrahydrofuran   (THF),   a   common   mobile   phase   for   size-­‐exclusion   chromatography,   on   the   enzymatic   activity   of   laccase   was   assessed.   Laccase   was   used   for   the   enzymatic   degradation   of   Organosolv   lignin,   both   trough   in-­‐solution   degradation   and   through   the  use  of  an  immobilized-­‐enzyme  reactor.  For  in-­‐solution  degradation,  it  was  observed  that  the   laccase  enzyme  is  compatible  with  a  high  content  of  THF,  with  the  enzymatic  degradation  still   successful  at  70  vol.-­‐%  THF.  At  least  15  vol.-­‐%  of  THF  was  necessary  to  fully  dissolve  Organosolv   lignin.  Unfortunately,  these  THF  contents  were  shown  to  be  incompatible  with  the  immobilized-­‐ enzyme  reactor.    

 

 

 

 

(3)

Samenvatting  

 

Tegenwoordig   zijn   we   als   mensen   bevoorrecht   om   energie   te   gebruiken   voor   alle   gewenste   doeleinden.  Een  wereld  zonder  een  grote  energieconsumptie  is  moeilijk  voor  te  stellen.  Als  de   energiebehoefte   in   dezelfde   lijn   blijft   groeien,   wordt   dit   zorgwekkend   omdat   de   fossiele   brandstoffen   niet   oneindig   zijn,   maar   deze   wel   een   gevaar   vormen   voor   onze   eigen   omgeving   door  bijvoorbeeld  de  opwarming  van  de  aarde.  Door  de  opkomst  van  nieuwe  technologieën  voor   bio-­‐zuiveringen  zullen  op  biomassa  gebaseerde  brandstoffen  een  goed  alternatief  vormen  voor   fossiele  brandstoffen.  In  dit  project  is  er  gekeken  naar  lignine  als  biobrandstof  vanwege  de  grote   beschikbaarheid   en   lignine   heeft   een   van   de   grootste   opslag   aan   aromaten,   wat   een   veelbelovend   vooruitzicht   is   voor   de  

bio-­‐raffinaderij.  De  exacte  structuur  van   lignine  is  lastig  vast  te  stellen,  daarnaast   is   de   depolymerisatie   van   lignine   ook   nog  steeds  een  uitdaging.    De  structuur   van   lignine   is   weergeven   in   het   figuur   rechts.  

Bij   dit   project   lag   de   focus   op   het   onderzoeken   van   mogelijkheden   voor   enzymatische   degradatie   van   Organosolv   lignine,   zowel   de   niet-­‐ gedegradeerde   als   de   gedegradeerde   vorm   van   Organosolv   lignine   werden  

onderzocht  door  middel  van  size-­‐exclusion  (SEC)  en  reversed-­‐phase  (RP)  vloeistofchromatografie.   De  SEC  analyse  liet  zien  dat  Organosolv  lignine,  die  gebruikt  is  in  dit  project,  een  relatief  klein   polymeer   is,   met   een   gewichtsverdeling   rond   de   526,9   Da.   In   een   later   stadium   van   dit   onderzoek  is  het  doel  om  een  online  methode  te  combineren  met  de  degradatie  met  een  twee-­‐ dimensionele   LC   analyse,   bijvoorbeeld   met   SECxRP.   Vanwege   deze   reden   was   het   effect   van   tetrahydrofuran  (THF),  een  veel  gebruikte  mobiele  fase  voor  SEC,    op  de  enzymatische  activiteit   onderzocht.   Laccase   was   gebruikt   voor   de   enzymatische   degradatie   van   Organosolv   lignine,   doormiddel  van  in-­‐solution  degradatie  en  door  het  gebruik  van  een  immobilized-­‐enzyme  reactor   (IMER).  De  resultaten  van  de  in-­‐solution  degradatie  lieten  zien  dat  het  laccase  enzym  geschikt  is   voor   een   hoge   concentratie   THF,   de   enzymatische   degradatie   was   nog   steeds   geslaagd   bij   70   vol.-­‐%   THF.   Tenminste   15   vol.-­‐%   THF   is   nodig   om   Organosolv   lignine   volledig   op   te   lossen.   Helaas  zijn  deze  THF  hoeveelheden  nog  niet  geschikt  voor  de  immobilized-­‐enzyme  reactor.    

Lignine  wordt  gevonden  in  de  celwand  van  een  plantencel,   waarbij   het   dient   als   een   soort   lijm   voor   (hemi)cellulose.   Lignine   is   een   willekeurig   gevormde   structuur   door   polymerisatie  van  de  drie  monolignols.  

(4)

Table  of  contents  

Abstract  ...  2

 

Samenvatting  ...  3

 

1.  Introduction  ...  5

 

1.1  General  introduction  ...  5

 

2.  Theory  ...  7

 

2.1  Lignin  ...  7

 

2.2  Liquid  Chromatography  ...  9

 

2.2.1  Size-­‐Exclusion  Chromatography:  SEC  ...  9

 

2.2.2  Reversed-­‐Phase  Liquid  Chromatography  ...  10

 

2.2.3  Hydrophilic  Interactions  Liquid  Chromatography:  HILIC  ...  10

 

2.3  Enzymatic  degradation  with  Laccase  ...  10

 

2.4  Aim  of  this  research  project  ...  12

 

3.  Experimental  ...  13

 

3.1  Reagents  &  chemicals  ...  13

 

3.2  Instruments  ...  13

 

3.3  Method  ...  14

 

3.3.1  Calibration  with  polymer  standards  ...  14

 

3.3.2  Sample  preparation  ...  14

 

3.3.3  SEC  analysis  of  lignin  ...  15

 

3.3.4  RPLC  analysis  of  lignin  ...  15

 

3.3.5  In-­‐solution  degradation  of  lignin  ...  15

 

3.3.6  Immobilized  enzyme  degradation  of  lignin  ...  15

 

4.  Results  and  discussion  ...  17

 

4.1  Calibration  curve  of  polystyrene  standards  ...  17

 

4.2  Effect  of  water  on  SEC  of  lignin  ...  18

 

4.3  SEC  analysis  of  lignin  and  degradation  products  ...  19

 

4.3.1  In-­‐solution  degradation  with  50˚C  and  65˚C  ...  19

 

4.3.2  Immobilized  enzyme  degradation  ...  21

 

4.4  RPLC  analysis  of  in-­‐solution  degradation  of  lignin  with  65˚C  ...  22

 

5.  Conclusion  ...  23

 

6.  Future  perspective  ...  24

 

7.  Acknowledgements  ...  25

 

8.  References  ...  26

 

Appendix  I  ...  27

 

I-­‐I  Lignin  degradation  SEC  chromatogram  at  65˚C  with  a  ratio  of  90%  THF  ...  27

 

I-­‐II  Lignin  degradation  SEC  chromatogram  at  50˚C  with  a  ratio  of  90%  THF  ...  27

 

Appendix  II  ...  28

 

II-­‐I  Lignin  degradation  RP  chromatogram  with  a  ratio  of  90%  THF  ...  28

 

           

 

(5)

1.  Introduction    

1.1  General  introduction    

In   modern   society   we   have   the   privilege   to   use   energy   for   all   kinds   of   purposes   in   almost   limitless  amounts.  A  world  without  large  energy  consumption  is  hard  to  imagine.  As  our  energy   consumption   continues   to   increase,   some   major   concerns   arise   that   cannot   be   ignored.   Our   dependence  on  fossil  fuel  to  generate  energy  is  causing  an  increasing  concern1  as  the  fossil  fuel  

stock  is  limited  and  its  use  is  hazardous  for  our  own  environment  due  to  its  relation  with  global   warming.   Barreto   et   al.   shows   that   there   is   an   ongoing   energy   transition   from   fossil   fuels   towards   renewable   and   biomass   energy.2   In   Figure   1,   it   is   shown   that   the   concerns   about  

dependence  on  fossil  fuel  result  in  a  shift  towards  renewables,  biomass  and  nuclear  energy3.  In  

the  beginning  of  the  20th  century  the  energy  production  was  mostly  based  on  coal.  Fifty  years  

later,  around  1950-­‐1970,  coal  became  less  predominant  and  oil  and  gas  filled  up  a  large  part  of   energy   production   (grey   line).   Forty   years   later,   around   2010,   a   new   interest   in   renewable   energies   arises.   The   predicted   developments   show   that   within   the   next   century,   around   2100,   renewables   and   biomass-­‐based   energy   will   have   the   majority   in   energy   production   (blue   and   green  line).3  

 

 

  Figure  1:  The  movement  of  interest  for  different  kinds  of  energy  in  time.  It  started  around   1900  with   mostly   coal.  Around   1950-­‐1970  this   made   a  shift   towards  a   majority   of   oil  and   gas.   The   prediction   is   that   in   de   future   the   demand   for   renewables,   biomass   and   nuclear   energy  becomes  larger  and  larger.  Figure  is  based  on  Barreto  et  al.  2  and  courtesy  of  Dr.  Wim  

(6)

Since  the  introduction  of  new  technologies  such  as  bio  refineries,  biomass-­‐based  fuels  present  a   very   promising   alternative   for   fossil   fuels.1   Bio   fuels   can   be   divided   into   first   and   second-­‐

generation  products.  First-­‐generation  bio  fuels  are  made  out  of  sugar,  starch  and  vegetable  oil.   Its   disadvantages   include   competition   with   the   food   industry   for   raw   materials,   and   the   large   energy  input  needed  to  make  bio  fuels  yielding  a  small  net  reduction  of  carbon  dioxide.4  Second-­‐

generation  bio  fuels  can  solve  the  biggest  problem  of  first-­‐generation  fuels  because  they  don’t   compete  with  the  food  industry  for  raw  materials,  which  can  grow  next  to  or  even  together  with   the  raw  materials  from  the  food  industry.  For  example,  lignocellulosic  materials  are  used  which   are  residues  from  agriculture  forestry.  

  Lignocellulosic  materials  consist  of  cellulose,  hemicellulose  and  lignin,  and  can  be  found   in  the  cell  wall  of  plants.  The  main  compound  of  lignocellulose  is  cellulose,  which  is  a  beta-­‐linked   chain   of   glucose   molecules.   Hemicellulose   is   composed   out   of   various   5-­‐   and   6-­‐carbon   sugars.   Lignin  can  be  seen  as  the  cellular  ‘glue’  that  holds  cellulose  and  hemicellulose  together  and  the   ratio   of   lignin   to   (hemi)   cellulose   varies   between   different   plants.   Lignin   is   composed   out   of   three  phenolic  compounds;  coumaryl  alcohol,  coniferyl  alcohol  and  sinapyl  alcohol.5    

  The   exact   structure   of   lignin   is   still   unknown,   but   if   the   biomass-­‐based   fuels   are   to   be   generated  from  lignin,  it  is  very  important  to  determine  its  exact  structure.  This  structure  can   for   instance   be   elucidated   using   liquid   chromatography,   which   can   provide   information   about   the   molar   mass   distribution   of   lignin   and   about   the   connection   between   the   size   of   degraded   polymers  and  its  hydrophobicity  or  hydrophilicity.  

(7)

2.  Theory

 

2.1  Lignin  

Lignin  is  a  polymer  with  a  three-­‐dimensional  structure  composed  of  three  main  building  blocks;   coumaryl  alcohol,  conifernyl  alcohol  and  synapyl  alcohol.5  These  building  blocks  are  also  called  

monolignols.  The  structure  of  lignin  is  given  in  Figure  2.    

 

Despite  the  fact  that  the  main  building  blocks  are  known,  the  structure  of  the  lignin  polymer  has   remained  difficult  to  characterize6,  in  part  because  the  ratio  of  monolignols,  molar  weight  and  

availability   varies   by   plant   source.   Chakar   et   al.   have   shown   that   the   availability   of   lignin   decreases   from   softwood   (27-­‐33%)   to   hardwoods   (18-­‐25%)   to   grasses   (17-­‐24%).   Lignin   of   softwood  mostly  consist  of  coniferyl  alcohol  (90%),  whereas  hardwood  lignin  has  an  equal  ratio   of   coniferyl   alcohol   and   sinapyl   alcohol.   Grass   lignins   mostly   contain   coniferyl   and   sinapyl   alcohol,  but  also  10-­‐20%  of  p-­‐coumaryl  alcohol.7  The  polymerization  process  is  initiated  by  the  

oxidation  of  the  hydroxyl  phenolic  groups  of  the  monolignols.  This  oxidation  is  catalysed  via  an   enzymatic  route,  this  route  is  initiated  by  an  electron  transfer  that  yields  monolignols  with  free   radicals,   which   can   couple   with   each   other.6   The   polymerization   of   lignin   is   done   by   different  

kind  of  couplings.  Crestini  et  al.  shows  that  the  first  coupling  is  from  head  to  tail,  where  the  head   (the  phenyl  group)  of  one  monolignols  is  coupled  to  the  tail  of  monolignols.  This  can  occur  in   two   ways,   the   first   way   is   with   the   oxygen   bonded   to   the   head   of   the   monolignol,   the   second   Figure   2:   Lignin   can   be   found   in   the   cell   wall   of   a   plant,   here   it   functions   as   the   ‘glue’   for   (hemi)cellulose.   Lignin   is   a   randomly   formed   structure   by   polymerisation   of   the   three   monolignols,  shown  in  the  upper  part  of  this  figure.  Courtesy  of  Edward  M.  Rubin  

(8)

option  is  with  the  carbon  next  to  a  double-­‐bonded  oxygen  on  the  head  of  the  monolignol  (Figure   3  and  Figure  4).    

 

 

  The   second   coupling   is   from   tail   to   tail,   this   can   also   occur   in   two   ways,   where   one   route   can   cause   two   5-­‐membered   rings   (Figure   5   and   Figure   6).   These   couplings   give   lignin   a   random   three-­‐dimensional  structure  without  any  repetitive  units  or  bonding  patterns.  8  

      O HO OCH3 + O OCH3 Lignin O HO OCH3 O CH3 Lignin HO O HO OCH3 + OCH3 Lignin O OCH3 O Lignin OCH3 HO OH OCH3 O HO OCH3 Lignin OCH3 O HO H3CO O OH + OCH3 O HO H3CO O OH OCH3 OH O O H3CO OH OCH3 O HO + OCH3 O HO OCH3 O HO OCH3 O HO O OCH3 O OH OH HO OCH3 HO OH OCH3 HO HO OCH3 OH

Figure  3:  Head  to  tail  coupling  of  monolignols.  This  coupling  can  take  place  because  of  the   two  radicals.  The  radical  on  the  ß-­‐place  reacts  with  the  radical  on  the  oxygen,  this  forms  a  ß-­‐ O-­‐4  coupling.  

Figure  4:  Head  to  tail  coupling  of  monolignols.  This  coupling  also  takes  place  because  of  the   two  radicals.  Only  the  location  is  different.  This  forms  a  ß-­‐5  coupling.  

Figure  5:  Tail  to  tail  coupling  of  monolignols.  The  OH-­‐tails  (drawn  in  blue)  form  within  two   steps  two  5-­‐membered  rings,  called  ß-­‐ß  coupling  

Figure  6:  Tail  to  tail  coupling  of  monolignols.  The  OH-­‐tails  (drawn  in  blue)  react  and  form  a   coupling  without  a  final  5-­‐membered  ring.  This  is  called  a  ß-­‐1  coupling.  

(9)

Unlike   cellulose   and   hemicellulose,   lignin   is   not   fermentable   but   it   can   provide   energy   or   undergo   thermochemical   modifications   to   produce   biofuels.1   Before   lignin   can   function   as   a  

biomass-­‐based  fuel,  it  has  to  undergo  a  production  process.  The  first  and  very  essential  step  in   this  production  process  is  the  pre-­‐treatment  of  lignin.  In  this  step  the  three  main  components  of   the  cell  wall,  cellulose,  hemicellulose  and  lignin  are  separated  from  each  other.6  This  is  followed  

by   the   pulping   process.   The   most   used   pulping   process   is   the   Kraft   process,   in   which   lignin   is   fragmented   into   smaller   water/alkali-­‐soluble   components.   This   happens   in   a   high-­‐pressure   vessel  called  a  digester,  with  aqueous  sodium  hydroxide  and  sodium  sulphide,  where  the  anions   of   those   molecules   cause   the   fragmentation.6   Alternatively,   the   process   of   Organosolv   pulping  

can  be  used,  which  is  a  pulping  process  based  on  low-­‐boiling  point  solvents.  Organosolv  pulping   is  one  of  the  routes  that  can  produce  high-­‐quality  cellulose  bio  fuel  with  a  lignin  purity  of  <1%   wt.   of   residual   carbohydrate   content.9   The   most   well-­‐known   kind   of   Organosolv   is   the   Allcel  

process,   which   uses   ethanol   as   solvent.   With   Organosolv   lignin   the   average   molecular   weight   (Mn)   is   less   than   1000,   while   with   Kraft   pulping   the   Mn   value   is   much   higher,   between   1000-­‐ 3000.8  In  this  research  project,  the  lignin  was  obtained  using  the  Organosolv  pulping  method.    

2.2  Liquid  Chromatography  

(Ultra)  High-­‐Pressure  Liquid  Chromatography  (UHPLC)  is  an  analytical  tool  widely  used  for  the   separation  of  both  small  and  large  molecules.10  When  a  sample  is  injected,  it  is  carried  by  a  fluid  

from  one  end  through  the  whole  column  to  the  other  end.  The  column  is  usually  packed  with  a   particulate  layer,  such  as  silica  modified  with  octadecyl  alkyl  (C18)  chains.11  Separation  is  based  

on   a   difference   in   distribution   of   sample   molecules   between   the   stationary   and   mobile   phase.   This  difference  in  distribution  can  be  described  by  the  partitioning  ratio  (K),  which  is  the  ratio   between  the  concentration  of  the  sample  molecules  on  the  stationary  phase  and  in  the  mobile   phase.   Different   components   will   elute   from   the   column   at   different   times,   depending   on   the   difference   in   their   partitioning   ratios.   The   most   important   types   of   liquid   chromatography   include   reversed-­‐phase   (RP),   normal   phase   (NP),   ion-­‐exchange   (IEX)   and   size-­‐exclusion   (SEC).   These   types   are   based   on   different   interactions   between   the   stationary   phase   and   the   analyte   molecules.    

2.2.1  Size-­‐Exclusion  Chromatography:  SEC  

Size-­‐Exclusion  Chromatography  (SEC)  is  a  type  of  liquid  chromatography  in  which  separation  is   based  on  partial  exclusion  of  the  analyte  through  the  pores  of  the  stationary  phase.  Molecules   with   a   smaller   hydrodynamic   volume   will   penetrate   further   into   smaller   pores   than   larger   molecules,   thus   small   molecules   experience   a   larger   accessible   pore   volume   than   larger   molecules.  Therefore,  the  small  molecules  have  a  longer  pathway  and  elute  later.  All  molecules   that  are  very  small  compared  to  the  pore  size  will  spend  the  same  amount  of  time  in  the  column  

(10)

and  therefore  will  have  the  same  elution  time.  At  the  same  time  all  large  molecules  that  are  too   large   to   penetrate   the   pores   will   also   have   the   same   elution   time.  10   Hence,   the   range   of  

separation  of  polymers  is  related  to  the  pore  size  of  the  SEC  column.  In  SEC,  analyte  molecules   ideally   do   not   interact   with   the   surface   of   the   stationary   phase.   For   this   purpose,   Tetrahydrofuran  (THF)  can  be  used  as  mobile  phase.  

2.2.2  Reversed-­‐Phase  Liquid  Chromatography  

Despite   the   fact   that   it   is   called  reversed-­‐phase  liquid  chromatography  (RPLC),   this   is   the   more   common   kind   of   liquid   chromatography   compared   to   normal-­‐phase   liquid   chromatography   (NPLC).   RPLC   is   based   on   a   difference   in   hydrophobicity   and   uses   an   hydrophobic   stationary   phase,  e.g.,  silica-­‐based  bonded  phases  such  as  C18  chains,  combined  with  a  gradient  of  mobile  

phase  that  goes  from  a  hydrophilic  mobile  phase,  e.g.  water  to  a  hydrophobic  mobile  phase,  e.g.,   aqueous  acetonitrile  or  methanol.    

2.2.3  Hydrophilic  Interactions  Liquid  Chromatography:  HILIC  

Hydrophilic   interactions   liquid   chromatography   (HILIC)   is   a   valuable   alternative   for   reversed-­‐ phase  liquid  chromatography  for  the  separation  of  polar  and  weakly  acidic  of  basic  samples.12  

HILIC   is   a   type   of   normal-­‐phase   chromatography.   A   HILIC   column   contains   a   polar   stationary   phase,  which  usually  is  silica,  without  any  C18  chains.  Irgum  et  al.  suggests  that  the  mechanism  of  

HILIC  is  building  up  a  water  layer  on  the  stationary  phase,  which  has  interactions  with  the  polar   compounds  in  the  injected  sample.  This  water  layer  can  be  built  up  by  adding  small  amounts  of   water   to   the   mobile   phase.   If   the   ratio   of   water   is   too   high,   then   the   water   layer   will   break   down.13  For  every  run  with  HILIC  the  water  layer  has  to  be  built  up  at  the  beginning  and  flushed  

out  at  the  end.    

2.3  Enzymatic  degradation  with  Laccase  

The  depolymerisation  of  lignin  is  still  a  challenge.  Especially  compared  to  polysaccharides,  the   degradation  of  lignin  is  not  as  fully  developed.  Difficulties  with  the  depolymerisation  of  lignin  in   catalytic  processing  are  caused  by  the  difference  in  inter-­‐molecular  linkages.  14  In  this  research  

project  the  degradation  of  lignin  is  focused  on  the  use  of  the  enzyme  laccase.    

  Bourbounnais  et  al.  has  shown  that  laccase  is  a  multi-­‐copper  oxidase  complex,  which  is   produced   by   certain   trees   and   fungi.   It   is   found   that   fungal   laccase   plays   a   role   in   the   biodegradation   of   lignin.   Laccase   oxidizes   phenols   and   polyphenols   by   one   electron   oxidation   with  the  reduction  of  O2  into  H2O.  Laccase  from  the  Coriolus  (Trumetes)  versicolor,  which  is  used  

in   this   research   project,   is   found   most   effective   for   degradation   of   lignin.15   The   enzymatic  

(11)

reaction   equation   of   laccase   is   given.   Figure   7B   is   an   example   of   the   linkage   monolignols,   the   bond  marked  in  red  is  most  likely  the  one  broken  by  laccase.14  

 

 

The   most   straightforward   method   for   degradation   of   lignin   with   laccase   is   by   in   solution-­‐ degradation.  The  solution  can  be  brought  to  ideal  circumstances  for  the  enzyme,  which  consists   of  a  pH  of  4-­‐5  and  a  temperature  of  65  ˚C.  Typically,  these  digestions  are  carried  out  overnight.   Alternatively,   an   immobilized-­‐enzyme   reactor   (IMER)   can   be   used.   Girelli   et   al.   shows   that   immobilized  enzymes  are  widely  used  in  biocatalysts  and  for  bio-­‐specific  detection.  Enzymes  are   immobilised  in  a  confined  space,  resulting  in  shorter  diffusion  distances,  which  leads  to  shorter   digestion  times.  Additionally,  immobilized  enzymes  are  typically  more  stable  than  free  enzymes   to   changes   in   temperature,   organic   solvents   and   pH.   Enzymes   can   be   immobilised   through   matrix  entrapment,  adsorption,  or  covalent  bonding.  As  a  substrate  for  enzyme  immobilisation,   the   surface   of   an   open   microfluidic   channel,   membranes,   particles   or   porous   monolithic   structures  can  be  used.17  Figure  8  shows  an  example  of  covalent  attachment  of  an  enzyme  to  a  

polymer   monolithic   substrate   inside   a   micro   channel   of   a   cyclic-­‐olefin-­‐copolymer-­‐based   microfluidic  device.        

 

 

 

O2 + 4 OH OH laccase O OH 4 + 2 H2O O O R O O HO A B

Figure  7A:  Laccase  has  an  enzymatic  activity  within  lignin,  because  it  oxidizes  phenol-­‐groups  by   one  electron  oxidation  with  the  reduction  of  O2  into  H2O.  Figure  7B:  The  location  marked  in  red  

is   where  the   depolymerisation  takes   place.   With   the  depolymerisation   there   is   an   increase   in   aliphatic/phenolic  OH.  

   

Figure  8:  Production  process  of  an  immobilized  enzyme  reactor  (IMER).  In  several  steps,  as   shown  in  the  figure,  the  enzyme  is  immobilized  at  the  surface  of  the  channel.  Courtesy  of  Dr.   Bert  Wouters.  

(12)

2.4  Aim  of  this  research  project

 

Lignin   was   chosen   as   the   subject   of   interest   for   its   use   for   bio   fuels   because   of   its   large   availability  on  earth  and  additionally  it  represents  one  of  the  richest  sources  of  aromatics  which   gives   a   promising   perspective   in   the   future   bio   refinery.18   As   mentioned   before,   the   exact  

structure  of  lignin  is  hard  to  determine,  and  the  depolymerisation  of  lignin  remains  a  challenge.9  

In  this  research  project  the  focus  was  placed  on  the  analysis  of  the  structure  of  Organosolv  lignin   and   the   analysis   of   the   degradation   products   of   lignin   by   the   enzyme   laccase.   Degradation   of   lignin  in  combination  with  two-­‐dimensional  LC  may  give  information  about  the  subcomponents   of   the   polymer.   These   subcomponents   can   contain   hydrophilic   components,   for   example   OH-­‐ groups,  which  were  hidden  in  the  three-­‐dimensional  structure  of  the  polymer.  

    To  tackle  these  subjects,  this  research  project  was  divided  in  two  main  parts.  The  first   part   of   this   research   project   focussed   on   the   optimization   of   the   liquid   chromatography   separation   for   Organosolv   lignin.   First   the   Organosolv   lignin   was   separated   by   size-­‐exclusion   chromatography  (SEC)  and  reversed-­‐phase  liquid  chromatography  (RPLC).  For  SEC,  polystyrene   standards  were  used  to  set  up  a  calibration  curve  in  order  to  predict  a  molar  mass  distribution   of  Organosolv  lignin.  For  the  optimization  of  SEC,  the  influence  of  water  present  in  the  sample   was   studied.   This   is   important   because   water   is   almost   unavoidable   if   a   multi-­‐dimensional   analysis  is  used.    

    The  second  part  of  this  research  project  focuses  on  connecting  the  analysis  of  both  lignin   and   the   degradation   products   with   the   degradation   process   itself.   For   the   separation   and   analysis  of  the  enzymatic  degradation  products  of  Organosolv  lignin,  RPLC  and  SEC  were  used.   SEC  is  used  because  it  is  expected  that  the  degradation  products  are  smaller  than  the  original   lignin  structure.  Additionally,  degradation  products  of  Organosolv  lignin  likely  have  a  different   hydrophobicity  because  hidden  OH-­‐groups  may  become  available  for  interaction  with  stationary   phase,   which   is   why   the   degradation   products   were   also   studied   with   RPLC.   The   enzymatic   degradation   process   can   be   done   in   two   ways:   in-­‐solution   or   with   immobilized-­‐enzymes   degradation.   Lignin   degradation   takes   place   with   the   laccase   enzyme,   which   cuts   the   lignin   molecules  by  oxygen  reduction  into  smaller  pieces.  Degradation  with  immobilized  enzymes  is  a   more   advanced   way   for   lignin   degradation.   The   enzyme   and   microfluidic   reactor   are   not   compatible  with  (a  high  ratio  of)  THF,  but  the  lignin  will  not  dissolve  in  (exclusively)  TRIS  buffer.   Therefore,   to   combine   the   analysis   with   the   degradation,   different   ratios   of   tetrahydrofuran   (THF)  and  aqueous  buffer  were  tested  to  find  an  optimum  for  both  the  analysis  and  degradation.   If   a   compromise   can   be   found   the   lignin   samples   can   be   degraded   in   the   immobilized-­‐enzyme   reactor  (IMER),  which  can  be  used  in  between  the  first  and  second  dimension  of  the  LC  analysis.    

(13)

3.  Experimental    

3.1  Reagents  &  chemicals  

Tetrahydrofuran   (THF,   stabilized/BHT,   AR   grade,   ≥99.8%),   acetonitrile   (ACN,   LC-­‐MS   grade),   Acetone   (99%)   and   methanol   (MeOH,   absolute,   LC-­‐MS   grade)   were   purchased   from   Biosolve   (Valkenswaard,   The   Netherlands).   Aluminium   Oxide   (Al2O3)   butyl   methacrylate   (BMA,   99%),  

ethylene  glycol  dimethacrylate  (EDMA),  ethylene  glycol  diacrylate  (EDA,  90%,  technical  grade),   methyl   methacrylate   (MMA,   99%),   1-­‐propanol   (>99.8%),   1,4-­‐butanediol   (ReagentPlus   quality,   ≥99%).   2,2-­‐dimethoxy-­‐2-­‐phenylacetonephenone   (DMPA,   ≥99%),   4,4-­‐bis(diethylamino)-­‐ benzophenone   (DEBP,   ≥99%),   poly   (ethylene   glycol)   methacrylate   (PEGMA,   number-­‐average   molar   mass   500   g/mole),   ethanolamine   (≥98%),   tert-­‐butanol   (American   Chemical   Society   reagent,   ≥99%),   tris(hydroxymethyl)aminomethane   hydrochloride   (Tris–HCl),   trifluoroacetic   acid   (TFA,   ≥99%),   Laccase   (from   Trametes   Versicolor),   Calcium   Chloride   (CaCl2)   and   toluene  

(Chromasolve   grade)   were   purchased   from   Sigma   Aldrich   (Zwijndrecht,   The   Netherlands).   2-­‐ Vinyl-­‐4,4-­‐dimethylazlactone   was   purchased   from   Pure   Chemistry   Scientific   (Watertown,   MA,   USA).   Polystyrene   standards   (PS;   MW=580   to   7450000).   Water   was   purified   in-­‐house   using   a   Milli-­‐Q   Q-­‐POD   water-­‐purification   system   (Millipore).   Organosolv   lignin   (OSL,   product   no.   37,   101-­‐7)  was  provided  by  Shell  B.V.  

3.2  Instruments  

Size-­‐exclusion  chromatography  (SEC)  experiments  were  performed  on  the  Shimadzu  2  system   (Table  1)  and  the  reversed-­‐phase  liquid  chromatography  (RPLC)  experiments  were  performed   on  the  Agilent  system,  shown  in  Table  1.  The  column  used  for  SEC  was  PLRP-­‐S  (7.5x300  mm,  3-­‐ µm  particles,  100Å)  from  Polymer  Laboratories  England,  UK).  The  column  used  for  RPLC  was  an   Agilent  Zorbax  Eclipse  Plus  C18  (Rapid  Resolution  HT  4.6x50  mm,  1.8-­‐µm  particles).  The  column   used  for  HILIC  was  a  Phenomenex  Kinetex  column  (50x3  mm,  1.7-­‐µm  particles,  100  Å).  For  the   immobilization  of  laccase  a  microfluidic  reactor  was  used  based  on  the  prototype  of  Wouters  et  

al.17   For   UV-­‐light   exposure,   Spectrolinker   XL-­‐1500   UV   Crosslinker   (Spectronics   Corporation,  

365nm)   was   used.   A   Hamilton   syringe   (81320,   1001TL,   1.0   mL)   and   Spark   Holland   HPLC   Column  Thermostat  oven  (SPH99)  were  used  for  the  immobilized  enzyme  degradation.  

(14)

Table  2:  Preparation  of  lignin  samples  

3.3  Method    

3.3.1  Calibration  with  polymer  standards  

The   SEC   column   was   calibrated   with   polystyrene   (PS)   standards.   The   PS-­‐standards   were   dissolved   in   tetrahydrofuran   (THF,   stabilized/BHT).   Toluene   (500   ppm)   was   used   as   internal   standard.  The  calibration  was  performed  on  system  Shimadzu  2  and  measured  with  an  isocratic   flow  for  12  minutes.  The  mobile  phase  was  THF  (stabilized/BHT,  AR-­‐grade).  

3.3.2  Sample  preparation  

For   the   analysis   of   lignin   and   its   degradation   products,   Organosolv   lignin   samples   were   prepared   with   different   ratios   THF/aqueous   buffer.   The   preparation   of   the   aqueous   buffer   is   done  with  TRIS  HCl  (394  mg),  CaCl2  (148,5  mg)  and  water  (MilliQ,  50  mL),  based  on  the  protocol  

for   the   immobilized-­‐enzyme   reactor.   The   sample   preparation   is   shown   in   Table   2.   Organosolv   lignin  with  a  concentration  of  250  ppm  was  used,  diluted  from  a  stock-­‐solution  of  50000  ppm   (dissolved  in  THF).    

   

  Shimadzu  2   Agilent  

Pump/  Degasser   LC-­‐10AD/  DGU-­‐14A   1290  BinPump  G42290A   Detector   SPD-­‐M20A  (1,5  Hz)   1290  DAD  G4212A  (160  Hz)   Injection  volume   20  µL   5  µL  

Software   Lab  solutions  1.21  SP1   Agilent   OpenLAB   CDS   Chemstation   edition   Rev.  C01.04  [35]  

Sampler     -­‐   1290  Sampler  G4226A  

Ratio  THF/buffer  (%)   Lignin  dissolved  in  THF  (µL)   THF  (µL)   Aqueous  buffer  (µL)  

90/10   5   895   100   80/20   5   795   200   75/25   5   745   250   70/30   5   695   300   60/40   5   595   400   50/50   5   495   500   45/55   5   445   550   40/60   5   395   600   30/70   5   295   700  

(15)

3.3.3  SEC  analysis  of  lignin  

The   SEC   analysis   of   Organosolv   lignin   and   its   degradation   products   was   performed   on   system   Shimadzu   2   and   measured   in   isocratic   mode   with   a   flow   rate   of   1.0   mL/min   with   an   analysis   time   of   12   minutes.   The   mobile   phase   was   THF   (stabilized/BHT,   AR-­‐grade).   For   the   effect   of   water   on   the   chromatogram   of   lignin   the   same   LC   system   and   mobile   phase   was   used.   In   the   sample  vial,  Organosolv  lignin  was  dissolved  in  different  ratios  of  THF/water,  with  the  following   compositions:  90%,  80%,  75%,  70%,  65%  and  60%  THF.    

3.3.4  RPLC  analysis  of  lignin  

The  RPLC  analysis  of  lignin  and  its  degradation  products  were  performed  on  the  Agilent  system   measured  with  the  gradient  in  Table  3.  This  gradient  works  with  two  different  mobile  phases.   The  first  mobile  phase,  A,  consist  of  95%  water  and  5%  ACN.  The  second  mobile  phase,  B,  consist   of   5%   water   and   95%   ACN.   Both   the   original   and   degraded   lignin   with   different   ratios   THF/aqueous  buffer  were  analysed  with  RP.    

 

3.3.5  In-­‐solution  degradation  of  lignin    

The  in-­‐solution  degradation  of  lignin  by  laccase  is  done  in  five  steps.  The  first  step  is  to  sonicate   both  lignin  as  laccase  for  10  minutes.  Laccase  (1µL,  1000  ppm)  was  then  added  to  lignin  (500µL,   250  ppm).  The  following  step  was  to  lower  the  pH  to  3/4  with  HCl  (5  µL,  1M).  The  mixture  is   now  set  in  an  oven  (50˚C  and  65˚C).  After  24-­‐hour  trifluoroacetic  acid  (TFA,  2,5  µL)  is  added  to   lower  the  pH  and  stop  the  degradation.    

3.3.6  Immobilized  enzyme  degradation  of  lignin   3.3.6.1  creating  an  immobilized-­‐enzyme  reactor  

The  procedure  of  creating  an  immobilized-­‐enzyme  reactor  is  based  on  the  protocol  of  Wouters  

et  al.  (2017)  and  consists  of  three  steps.  The  first  step  consist  of  a  surface  modification  of  cyclic  

olefin  copolymer  (COC)  and  in-­‐situ  polymerization.  For  the  surface  modification,  a  pre-­‐treatment   mixture   of   DEBP   (30.0   mg),   EDA   (485.0   mg)   and   MMA   (485.8   mg)   and   a   monolith   mixture   of  

Time  (minutes)   A%   B%   Flow  rate  (mL/min)  

0   100   0   1.3  

3.00   0   100   1.5  

3.50   0   100   1.5  

5.00   100   0   1.5  

6.00   100   0   1.5  

(16)

DMPA  (4,1  mg),  BMA  (160,3  mg),  EDMA  (239,4  mg),  1-­‐propanol  (281,0  mg)  and  1,4-­‐butanediol   (321,2   mg)   were   prepared,   sonicated   (10   minutes)   and   degassed   (10   minutes).   Then   the   chip   was   flushed   with   acetone   (2   syringe   volumes)   and   dried   with   nitrogen.   The   pre-­‐treatment   mixture  was  injected  into  the  chip.  The  chip  was  then  exposed  to  UV  light  (365  nm,  4  minutes)   and  flushed  with  acetone  (2  syringe  volumes)  again.  For  the  in-­‐situ  polymerization  the  monolith   mixture  was  injected  into  the  chip.  The  chip  was  exposed  to  UV  light  (365  nm,  10  minutes)  and   flushed  with  methanol  (2  hours,  1  µL/min)    

  The  second  step  consist  of  photografting  of  poly(ethylene  glycol)  methacrylate  (PEGMA)   and  2-­‐vinyl-­‐4-­‐4-­‐dimethylazlactone  onto  the  polymer  monolith.  A  mixture  of  DEBP  (20.1  mg)  in   methanol   (0.5   mL),   a   mixture   of   PEGMA   (30.2   mg)   in   water   (MilliQ,   574   µL)   and   a   mixture   of   DEBP   (2.3   mg),   2-­‐vinyl-­‐4,4-­‐dimethylazlactone   (150.4   mg),   tert-­‐butanol   (635.3   mg)   and   water   (MilliQ;   211.0   mg)   were   prepared   and   sonicated   (10   minutes).   Then   the   DEBP   mixture   was   pumped   through   the   reactor   (5µL/min   for   2   minutes,   then   0.5   µL/min   for   30   minutes).   The   reactor  was  exposed  to  UV  light  (365  nm,  2  minutes)  and  flushed  with  methanol  (5µL/min  for  2   minutes,   then   0.5   µL/min   for   30   minutes).   The   PEGMA   mixture   was   pumped   through   the   solution  (5µL/min  for  2  minutes,  then  0.5  µL/min  for  30  minutes).  The  reactor  was  exposed  to   UV  light  (365  nm,  2  minutes)  and  flushed  with  water  (5  µL/min  for  2  minutes,  then  0.5  µL/min   overnight).   The   azlactone   mixture   was   pumped   through   the   reactor   (5   µL/min   for   2   minutes,   then   0,5   µL/min   for   1   hour).   The   reactor   was   exposed   to   UV   light   (365   nm,   5   minutes)   and   flushed  with  acetone  (5  µL/min  for  2  minutes,  then  0,5  µL/min  for  1  hour).  

  The   third   and   last   step   consists   the   laccase   immobilization   and   quenching   of   the   unreacted   azlactone   groups.   A   mixture   of   laccase   (1.5   mg)   and   TRIS   buffer   (0.75   mL)   and   a   mixture   of   ethanolamine   (62.0   mg)   and   water   (MilliQ,   1015   µL)   were   prepared   and   sonicated   (10  minutes).  The  enzyme  solution  was  pumped  through  the  reactor  (5  µL/min  for  2  minutes,   then  0.5  µL/min  for  2  hour).  For  quenching  of  the  unreacted  azlactone  groups  the  ethanolamine   mixture  was  pumped  through  the  reactor  (5  µL/min  for  2  minutes,  then  0.5  µL/min  for  1  hour).   The  reactor  was  last  flushed  with  TRIS  buffer  (5  µL/min  for  2  minutes,  then  0.5  µL/min  for  1   hour)  and  stored  at  4˚C.  

3.3.6.2  Degradation  of  lignin  with  an  IMER  

For  the  degradation  of  lignin  with  immobilized  laccase  with  a  residence  time  of  3.8  minutes,  a   mixture   of   TRIS   buffer   and   THF   (80:20   vol.-­‐%)   was   flushed   through   the   reactor   (2µL/min,   30   minutes,  65˚C).  Then  for  the  sample  introduction  a  lignin  sample  in  a  TRIS  buffer/THF  solution   (80:20  vol.-­‐%)  was  pumped  through  the  reactor  (0.5  µL/min,  20  minutes,  65˚C).  The  sample  was   then   collected   in   a   vial   (0.5   µL/min,   100   minutes,   65˚C).   The   reactor   is   flushed   with   an   80:20  

(17)

Different  ratios  of  TRIS  buffer/  THF  (15/20/30  %  THF)  and  different  concentrations  lignin  (125   ppm  and  250  ppm)  were  tested.  

4.  Results  and  discussion  

4.1  Calibration  curve  of  polystyrene  standards  

The  calibration  curve  of  the  polystyrene  (PS)  standards  is  shown  in  Figure  9.  A  calibration  curve   is  used  to  relate  retention  time  to  molar  weight  and  shows  the  optimum  molar  weight  range  for   the  column.  The  optimum  lies  in  the  most  horizontal  part  of  the  curve.  The  flow  rate  was  fixed  at   1.00   mL/min.   The   slalom   effect   is   observed   for   PS   standards   from   a   molar   mass   of   2x106   Da.  

Slalom  effects  occur  when  molecules  are  so  large  they  get  a  higher  retention  time  again.  This  is   due  to  the  fact  that  large  polymers  won’t  go  past  the  pores  and  stick  randomly  in  the  column  and   therefore   elute   later.   When   slalom   effects   are   observed,   the   column   is   not   compatible   for   that   range  of  molar  mass.    

 

4.1.1  Molar  weight  distribution  of  lignin

 

Lignin   is   not   a   polymer   with   just   one   single   molar   mass,   but   has   a   wide   distribution   of   molar   weight.  The  molar  weight  distribution  of  Organosolv  lignin  is  shown  in  Figure  6.  This  figure  was   created  using  the  calibration  curve  with  a  chromatogram  of  lignin.  The  polynomial  function  of   the  calibration  curve  (y=  -­‐0.0487x3+  0.8944x2  -­‐5,918x  +18,839)  is  used  for  the  relation  between  

the  retention  time  and  molar  weight.  Together  with  the  lignin  chromatogram  the  retention  time   is  converted  to  molar  mass.  Figure  10  shows  that  Organosolv  lignin  has  a  majority  of  molar  mass   of  526.9  Da.    

 

Figure  9:  Calibration  curve  of  column  PLRP-­‐s.  This  calibration  curve  shows  that  this  column   has  its  optimum  around  the  15.000  Da.  System  Shimadzu  2.  Mobile  phase  THF  stabilized    

(18)

 

 

 

4.2  Effect  of  water  on  SEC  of  lignin

 

The  effect  of  water  on  the  chromatogram  with  SEC  analysis  is  shown  in  Figure  11.  When  water   was  added  to  the  lignin  sample,  a  new  peak  was  observed  around  10  minutes.  Generally,  when   the   concentration   of   water   is   higher,   the   peak   at   10   minutes   was   also   higher,   but   this   is   not   consistent.   The   lignin   peak   is   normalized.   Remarkably   the   shape   of   the   lignin   peak   stays   the   same,  so  there  can  be  concluded  that  water  doesn’t  affect  lignin  on  the  chromatogram.  

 

 

Figure   10:   Molar   weight   distribution   of   lignin.   This   distribution   is   built   up   from   the   polynomial  function  of  the  calibration  curve  (y=  -­‐0.0487x3+  0.8944x2  -­‐5,918x  +18,839)  and  

the  lignin    Chromatogram  

Figure  11:  Lignin  chromatogram  with  different  ratios  of  THF/water.  With  a  higher  ratio  of   water,  the  peak  at  almost  10  minutes  gives  a  higher  intensity.  The  shape  of  the  lignin  peak   (at   8,5   minutes)   stays   constant.   Peaks   are   normalized.   System:   Shimadzu   2.   Mobile   phase:  

(19)

4.3  SEC  analysis  of  lignin  and  degradation  products

 

4.3.1  In-­‐solution  degradation  with  50˚C  and  65˚C  

Lignin   is   degraded   with   the   enzyme   laccase   with   two   temperatures,   50˚C   and   65˚C.   First   65˚C   was   chosen   because   this   is   the   optimum   temperature   for   enzymatic   activity,   but   this   temperature   also   has   a   disadvantage   as   it   is   close   to   the   boiling   point   of   THF   (65-­‐67˚C).   Therefore,  the  mixtures  with  a  high  ratio  of  THF  were  (partly  or  fully)  evaporated  after  24  hours.   Because  of  this  observation  a  lower  temperature  of  50˚C  was  chosen.  There  was  much  more  of   the   mixture   still   present   after   24   hours   of   degradation.   Figure   13   shows   that   also   with   a   temperature  of  50˚C  lignin  is  still  degraded  with  laccase.  Furthermore,  from  Figure  12,  13  and   Appendix   1   it   can   be   concluded   that   the   enzyme   activity   is   related   to   the   THF   content   of   the   mixture.   With   the   ratio   of   90/10   THF/aqueous   buffer   a   small   shift   is   observed   towards   lower   molar  mass  (Appendix  1).  But  from  the  ratio  70/30  (75/25  with  50˚C)  a  clear  shift  to  the  lower   molar  mass  is  observed,  as  shown  in  Figure  12,13  and  Appendix  1.    

             

Figure   12:   Lignin   chromatogram   with   and   without   laccase.   The   blue   chromatogram   is   an   original   lignin   sample   and   the   red   chromatogram   is   lignin   degraded   with   laccase.   Degradation  is  observed  because  there  is  a  shift  towards  the  lower  molar  masses.  Peaks  are   normalized.   Temperature   degradation   65˚C.   System:   Shimadzu   2.   Mobile   phase:   THF   stabilized  

(20)

 

 

 

To  establish  with  certainty  that  the  degradation  is  due  to  the  enzymatic  activity  of  laccase  and   not  due  to  the  heat  or  other  changes  (for  example  the  change  in  pH),  a  lignin  sample  was  kept   under  the  same  conditions  as  for  in-­‐solution  degradation,  except  for  adding  the  laccase  enzyme.   Figure  14  shows  a  corresponding  peak  for  the  original  lignin  and  the  lignin  that  was  treated  with   the   in-­‐solution   method   (without   the   laccase).   This   shows   that   under   the   conditions   for   in-­‐ solution  degradation  lignin  is  not  degraded  by  heat  only,  but  the  enzyme  laccase  is  essential  for   degradation  of  lignin.    

 

   

Figure   13:   Lignin   chromatogram   with   and   without   laccase.   The   blue   chromatogram   is   the   original  lignin  and  the  red  chromatogram  is  lignin  degraded  with  laccase.  The  shift  towards   the  lower  molar  masses  (to  the  right)  indicates  that  lignin  is  degraded  by  laccase.  Peaks  are   normalized.   Temperature   degradation   50˚C.   System:   Shimadzu   2.   Mobile   phase:   THF   stabilized  

Figure   14:   Lignin   chromatogram   with   and   without   laccase   with   an   additional   lignin   chromatogram,  which  is  only  exposed  at  50˚C  without  any  laccase  (chromatogram  in  green).   This  chromatogram  shows  that  lignin  with  only  heat  (green  graph)  has  the  same  retention   time  and  shape  as  the  original  lignin  (blue  chromatogram).  This  indicates  that  lignin  is  not   degraded   only   by   heat.   Peaks   are   normalized.   Temperature   degradation   50˚C.   System:  

(21)

 

4.3.2  Immobilized  enzyme  degradation    

The   degradation   of   lignin   can   also   be   done   with   immobilized   enzymes   using   an   IMER.   It   is   challenging  to  make  lignin  compatible  with  the  enzymes  and  reactor.  For  the  enzymes,  THF  with   a  ratio  of  70  vol-­‐%  or  lower  does  not  seem  to  be  a  problem,  this  is  also  shown  in  paragraph  4.3.1.   The   reactor   is   less   compatible   with   THF,   small   ratios   of   THF   (30   vol-­‐%)   seems   to   damage   the   monolith   layer   of   the   reactor.   Therefore,   a   sample   with   a   THF   ratio   of   15   vol-­‐%   was   pumped   through  the  reactor  and  analysed  with  SEC,  shown  in  Figure  15.  The  problem  arises  with  lignin   that  is  dissolved  in  a  low  ratio  of  THF,  because  its  solubility  goes  down.  It  is  expected  that  very   little   to   no   lignin   went   through   the   reactor,   as   a   brown   residue   was   found   at   the   inlet   of   the   reactor  and  only  one  peak  at  11  minutes  is  observed  which  is  most  probably  caused  by  water.    

 

   

To  improve  to  solubility  of  lignin,  the  ratio  of  THF  is  increased  to  20  vol-­‐%.  Furthermore,  other   changes   are   made,   the   concentration   lignin   was   lowered   (125   ppm)   and   the   temperature   was   increased  (65˚C).  This  degradation  is  also  analysed  with  SEC,  and  shown  in  Figure  16.  Because  of   the  lower  concentration  of  lignin,  the  intensity  of  the  signal  is  low,  therefore  no  clear  peaks  are   observed.  Moreover,  there  is  no  clear  degradation  pattern  observed  compared  with  in-­‐solution   degradation,  as  shown  in  paragraph  4.3.1.  A  minimum  concentration  of  250  ppm  is  required  for   a   clear   detection   with   this   SEC   column   (PLRP-­‐S).   In   addition,   damage   in   the   reactor   was   observed   after   one   day   of   degradation   with   20   vol.-­‐%   of   THF.   After   ±   6   hours   it   was   clearly   visible  by  eye.    

Figure  15:  Chromatogram  of  lignin  (blue)  with  both  in-­‐solution  as  immobilized  degradation   (red  and  green,  respectively).  Only  a  peak  caused  by  water  is  observed  with  the  immobilized   enzyme   degradation.   Peaks   are   normalized.   Temperature   degradation:   50˚C.   System:   Shimadzu  2.  Mobile  phase:  THF  stabilized.  

(22)

 

 

4.4  RPLC  analysis  of  in-­‐solution  degradation  of  lignin  with  65˚C  

Besides   size-­‐exclusion   chromatography,   lignin   was   also   analysed   with   reversed-­‐phase   chromatography.   RP   was   only   used   for   the   first   batch   of   degradation   products   (in-­‐solution   degradation  at  65˚C).  The  RP  chromatograms  (Figure  15  and  Appendix  2)  are  more  difficult  to   interpret   and   it   is   more   difficult   to   identify   every   single   peak.   There   is   a   small   pattern   that   is   recognisable  in  the  different  chromatograms,  which  is  a  shift  towards  earlier  elution.  This  may   indicate  that  the  degraded  form  of  lignin  is  more  hydrophilic.  A  possible  explanation  is  that  OH-­‐ groups  previously  shielded  in  the  3D  structure  have  become  available  for  interaction  after  the   degradation.  

 

Figure   16:   Lignin   chromatogram   with   and   without   laccase.   The   blue   chromatogram   is   the   original  lignin  sample  and  the  red  chromatogram  is  the  lignin  sample  after  degradation  with   the   IMER.   There   is   no   clear   degradation   pattern   observed.   Concentration   lignin:   150   ppm.   Temperature  degradation:  65˚C.  System:  Shimadzu  2.  Mobile  phase:  THF  stabilized      

Figure  15:  Lignin  RP  chromatogram  with  and  without  laccase.  The  blue  chromatogram  is  the   original   lignin   sample   and   the   red   chromatogram   is   the   lignin   after   its   degradation   with   laccase.   A   shift   towards   less   hydrophobicity   is   observed.   Temperature   degradation:   65˚C.  

(23)

 

When  analysing  lignin  with  RPLC,  one  has  to  take  into  account  that  THF  is  used  as  solvent  for  the   first  dimension  with  SEC.  THF  is  such  a  strong  solvent  that  lignin  would  rather  stay  solvated  in   THF  than  interact  with  ACN,  the  mobile  phase  of  reversed  phase.  This  can  be  a  problem  because   this   will   cause   less   retention   and   less   separation.   This   is   observed   in   Appendix   2,   where   the   original  lignin  of  a  high  ratio  THF  (for  example  90%  or  80%  THF)  gives  rise  to  less  peaks  and   therefore  has  less  separation.  

5.  Conclusion  

 

A  SEC  and  RP  separation  method  for  lignin  was  investigated.  The  results  of  the  SEC  experiments   suggested  that  Organosolv  lignin  is  a  relatively  small  polymer  with  a  majority  of  a  mass  of  526,9   Da.   This   SEC   method   is   also   compatible   for   analysing   degradation   products,   favourably   with   a   high  ratio  of  THF  as  solvent.  A  high  ratio  of  THF  is  favourable  because  lignin  is  easily  dissolved  in   THF   and   the   SEC   method   works   well   with   strong   solvents,   like   THF.   From   the   RP   method,   chromatograms  were  difficult  to  interpret,  and  more  optimization  is  necessary  to  analyse  lignin   and  its  degradation  products.  The  in-­‐solution  degradation  of  lignin  with  the  enzyme  laccase  was   assessed.  The  laccase  enzyme  is  compatible  with  a  high  ratio  of  THF,   up  to  70  vol.-­‐%  THF  the   enzymatic  degradation  was  still  successful.  The  immobilized-­‐enzyme  degradation  with  the  IMER   is  not  yet  compatible  for  lignin  degradation  because  of  the  solvent  THF.  >  15  vol.-­‐%  of  THF  is   necessary  to  fully  dissolve  Organosolv  lignin,  because  it  has  a  low  solubility  for  other  solvents.   Unfortunately,  prolonged  exposure  of  the  polymer  monolith  in  the  IMER  to  20  vol.-­‐%  or  more   THF  content  leads  to  irreversible  damage.        

Referenties

GERELATEERDE DOCUMENTEN

&amp; Londeix, L., 1988 - Données

ordered lexicographically according to their eigenvalues in non-increasing order. Such an ordering of graphs seems to be a very natural one. The numbers of cubic graphs with

Welds produced by subsonic welding are very similar to ultrasonic welds. Therefore we assume that the welding mechanism of both subsonic and ultrasonic welding is the same.

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

By observing their performance in conditions differing in outcome-precision (high or low) and valence (reward or punishment), it was possible to elucidate the effect of this precision

The method was performed in three main steps: (1) a time-frequency transform called synchrosqueezing transform (SST) was used to extract the respiratory-induced intensity, amplitude

Voorafgaande aan de enquête zijn var- kenshouders benaderd met een korte vragenlijst over het wel of niet deel willen nemen aan de enquête en over de bedrijfsomvang, de arbeidsinzet

Our paper is structured as follows: In Section 2 we briefly describe the construction of the Azerbaijani corpus; in Section 3 we present the minimizers; in Section 4 we look at