• No results found

A new class of analytic functions defined by means of a generalization of the Srivastava-Attiya operator

N/A
N/A
Protected

Academic year: 2021

Share "A new class of analytic functions defined by means of a generalization of the Srivastava-Attiya operator"

Copied!
15
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

R E S E A R C H

Open Access

A new class of analytic functions defined by

means of a generalization of the

Srivastava-Attiya operator

Hari M Srivastava

1

and Sebastien Gaboury

2*

*Correspondence: s1gabour@uqac.ca

2Department of Mathematics and Computer Science, University of Québec at Chicoutimi, Chicoutimi, Québec G7H 2B1, Canada Full list of author information is available at the end of the article

Abstract

In this paper, we introduce a new class of analytic functions defined by a new convolution operator Js,a,λ(λ

p),(μq),bwhich generalizes the well-known Srivastava-Attiya operator investigated by Srivastava and Attiya (Integral Transforms Spec. Funct. 18:207-216, 2007). We derive coefficient inequalities, distortion theorems, extreme points and the Fekete-Szegö problem for this new function class.

MSC: Primary 30C45; 11M35; secondary 30C10

Keywords: analytic functions; starlike functions; generalized Hurwitz-Lerch zeta

function; Srivastava-Attiya operator; Hadamard product

1 Introduction

LetA denote the class of functions f (z) normalized by

f(z) = z +



k=

akzk, (.)

which are analytic in the open unit disk U =z: z∈ C and |z| < .

A function f (z) in the classA is said to be in the class S(α) of starlike functions of order

αinU if it satisfies the following inequality:   zf(z) f(z)  > α (z∈ U;   α < ). (.)

The largely investigated Srivastava-Attiya operator is defined as [] (see also [–]):

Js,a(f )(z) = z + ∞  k=   + a k+ a s akzk, (.) where z∈ U, a ∈ C \ Z– , s∈ C and f ∈A.

©2015 Srivastava and Gaboury; licensee Springer. This is an Open Access article distributed under the terms of the Creative Com-mons Attribution License (http://creativecomCom-mons.org/licenses/by/4.0), which permits unrestricted use, distribution, and repro-duction in any medium, provided the original work is properly credited.

(2)

In fact, the linear operator Js,a(f ) can be written as

Js,a(f )(z) := Gs,a(z)∗ f (z) (.)

in terms of the Hadamard product (or convolution), where Gs,a(z) is given by

Gs,a(z) := ( + a)s



(z, s, a) – a–s (z∈ U). (.)

The function (z, s, a) involved in the right-hand side of (.) is the well-known Hurwitz-Lerch zeta function defined by (see, for example, [, p. et seq.]; see also [] and [, p.

et seq.]) (z, s, a) := ∞  n= zn (n + a)s a∈ C \ Z–; s∈ C when |z| < ; (s) >  when |z| = . (.) Recently, a new family of λ-generalized Hurwitz-Lerch zeta functions was inves-tigated by Srivastava [] (see also [–]). Srivastava considered the following func-tion: (ρλ,...,λ,...,ρpp,...,μ,...,σqq)(z, s, a; b, λ) =  λ(s)· ∞  n= p j=(λj)nρj (a + n)s· q j=(μj)nσj H,, (a + n)bλ (s, ),  , λ  zn n! min(a), (s)> ;(b) > ; λ > , (.) where  λj∈ C (j = , . . . , p) and μj∈ C \ Z–(j = , . . . , q); ρj>  (j = , . . . , p); σj>  (j = , . . . , q);  + q  j= σjp  j= ρj  

and the equality in the convergence condition holds true for suitably bounded values of |z| given by |z| < ∇ :=  p  j= ρj–ρj  ·  q  j= σjσj  .

Here, and for the remainder of this paper, (λ)κdenotes the Pochhammer symbol defined,

in terms of the gamma function, by

(λ)κ:= (λ + κ) (λ) = ⎧ ⎨ ⎩ λ(λ + )· · · (λ + n – ) (κ = n ∈ N; λ ∈ C),(κ = ; λ∈ C \ {}), (.)

(3)

it being understood conventionally that ():=  and assumed tacitly that the -quotient

exists (see, for details, [, p. et seq.]).

Definition  The H-function involved in the right-hand side of (.) is the well-known

Fox’s H-function [, Definition .] (see also [, ]) defined by

Hp,qm,n(z) = Hp,qm,n  z (a, A), . . . , (ap, Ap) (b, B), . . . , (bq, Bq)  =  π i  L(s)z –sds z∈ C \ {}; arg(z) < π, (.) where (s) = m j=(bj+ Bjsn j=( – aj– Ajs) p j=n+(aj+ Ajs)· q j=m+( – bj– Bjs) ,

an empty product is interpreted as , m, n, p and q are integers such that  m  q,  

n p, Aj>  (j = , . . . , p), Bj>  (j = , . . . , q), aj∈ C (j = , . . . , p), bj∈ C (j = , . . . , q) andL

is a suitable Mellin-Barnes type contour separating the poles of the gamma functions 

(bj+ Bjs)

m j=

from the poles of the gamma functions 

( – aj+ Ajs)

n j=.

It is worthy to mention that using the fact that [, p., Remark ]

lim b→  H,, (a + n)bλ (s, ),  , λ  = λ(s) (λ > ), (.) equation (.) reduces to (ρλ,...,ρp,σ,...,σq) ,...,λp;μ,...,μq (z, s, a; , λ) :=  ,...,ρp,σ,...,σq) λ,...,λp;μ,...,μq (z, s, a) = ∞  n= p j=(λj)nρj (a + n)s· q j=(μj)nσj zn n!. (.)

Definition  The function (ρλ,...,λ,...,ρpp;μ,σ,...,μ,...,σqq)(z, s, a) involved in (.) is the multiparameter extension and generalization of the Hurwitz-Lerch zeta function (z, s, a) introduced by Srivastava et al. [, p., Eq. (.)] defined by

(ρλ,...,ρp,σ,...,σq) ,...,λp;μ,...,μq (z, s, a) := ∞  n= p j=(λj)nρj (a + n)s· q j=(μj)nσj zn n!  p, q∈ N; λj∈ C (j = , . . . , p); a, μj∈ C \ Z–(j = , . . . , q); ρj, σk∈ R+(j = , . . . , p; k = , . . . , q);

(4)

> – when s, z∈ C; = – and s∈ C when |z| < ∇∗; = – and() >   when|z| = ∇ ∗ (.) with ∇∗:=  p  j= ρj–ρj  ·  q  j= σjσj  , (.) := q  j= σjp  j= ρj and := s + q  j= μjp  j= λj+ p– q  . (.)

We propose to consider the following linear operator

Js,a,λp),(μq),b(f ) :A → A, defined by

Js,a,λp),(μq),b(f )(z) = Gs,a,λp),(μq),b(z)∗ f (z), (.) where∗ denotes the Hadamard product (or convolution) of analytic functions, and the function Gs,a,λ p),(μq),b(z) is given by Gs,a,λp),(μq),b(z) :=λ q j=(μj)(s)(a + )s p j=(λj) · (a + , b, s, λ)– · (,...,,,...,)λ,...,λp;μ,...,μq(z, s, a; b, λ) – a–s λ(s) (a, b, s, λ)  = z + ∞  k= p j=(λj+ )k– q j=(μj+ )k–  a+  a+ k s (a + k, b, s, λ) (a + , b, s, λ)  zk k! (.) with (a, b, s, λ) := H,, abλ (s, ),  , λ  .

Combining (.) and (.), we obtain

Js,a,λp),(μq),b(f )(z) = z + ∞  k= p j=(λj+ )k– q j=(μj+ )k–  a+  a+ k s (a + k, b, s, λ) (a + , b, s, λ)  ak zk k! λj∈ C (j = , . . . , p) and μj∈ C \ Z–(j = , . . . , q); p q + ; z ∈ U , (.)

(5)

with

min(a), (s)> ; λ>  if(b) >  and

s∈ C; a∈ C \ Z– if b = .

Remark  It follows from (.) and (.) that the operator Js,a,λp),(μq),(f ) (special case of (.) when b = ) can be defined for a∈ C \ Z–by the following limit relationship:

Js,,λ p),(μq),(f )(z) := lima→  Js,a,λ p),(μq),(f )(z)  . (.)

We can see that the operator Js,a,λp),(μq),bgeneralizes several recently investigated operators such as:

(i) If p = , q =  and b = , then Js,a,λ

),(μ),= J

s,a

λ, where J

s,a

λis the linear operator introduced by Prajapat and Bulboacă [, p., Eq. (.)].

(ii) J(γ –,),(ν),s,a,λ = Is

a,ν,γ, where Ias,ν,γ is the generalized operator recently studied by Noor

and Bukhari [, p., Eq. (.)]. (iii) J(γ –,),(ν),,,λ = Is

ν,γ, where Iνs,γ is the Choi-Saigo-Srivastava operator [].

(iv) J(γ ,),(γ ),s,a,λ = Js,a, where Js,ais the Srivastava-Attiya operator [].

(v) J(γ ,),(γ ),–r,a,λ = I(r, a)(a , r ∈ Z), where the operator I(r, a) is the one introduced by Cho and Srivastava [].

(vi) J(β,),(α+β),,a,λ =

β(α , β > –), where the operatorQαβwas studied by Jung et

al.[].

(vii) J(γ ,),(γ ),,a,λ = Ja(a –), where Jadenotes the Bernardi operator [].

(viii) J(γ ,),(ν),,,λ =L(γ , ν), where L(γ , ν) is the well-known Carlson-Shaffer operator []. (ix) J(,),(–γ ),,,λ = γz ( γ < ), where γz is the fractional integral operator

investigated by Owa and Srivastava []. (x) J,a,λ

–,...,λp–,),(μ–,...,μq–,),= H, . . . , λp; μ, . . . , μq)(p q + ), where the operator H, . . . , λp; μ, . . . , μq)is the Dziok-Srivastava operator [, ] which

contains as special cases the Hohlov operator [] and the Ruscheweyh operator [].

We say that a function fA is in the class Ss,a,λ,∗p),(μq),b(α) if Js,a,λp),(μq),b(f ) is in the class

S(α), that is, if  z(Js,a,λ (λp),(μq),b(f ))  Js,a,λp),(μq),b(f )  > α λj∈ C (j = , . . . , p) and μj∈ C \ Z–(j = , . . . , q); z∈ U;   α < ; p  q + , (.) with min(a), (s)> ; λ>  if(b) >  and s∈ C; a∈ C \ Z– if b = .

(6)

In this paper, we systematically investigate the classSs,a,λ,∗p),(μq),b(α) of analytic functions defined above by means of the new generalized Srivastava-Attiya convolution opera-tor Js,a,λp),(μq),b. Especially, we derive coefficient inequalities, distortion theorems, extreme points and the Fekete-Szegö problem for this new function class.

2 Coefficient inequalities

Theorem  Let α∈ [, ). If f (z) ∈A satisfies the following equality

∞  k= (k – α) k! p j=(λj+ )k– q j=(μj+ )k– aa+ k+ s  (a + k, b, s, λ)(a + , b, s, λ) |ak|   – α, (.) then fSs,a,λ,∗ p),(μq),b(α).

Proof Suppose that inequality (.) holds for α∈ [, ). Let us define the function F(z) by

F(z) :=z(J s,a,λ (λp),(μq),b) (f )(z) Js,a,λp),(μq),b(f )(z) – α f(z)A. (.)

It is sufficient to prove that

FF(z) – (z) +  <  (z ∈ U) (.) to prove that f (z)Ss,a,λ,∗

p),(μq),b(α). In fact, we have that

F(z) := F(z) –  F(z) +  = z(Js,a,λ (λp),(μq),b)(f )(z) J(λp),(μq),bs,a,λ (f )(z) – α –  z(J(λp),(μq),bs,a,λ )(f )(z) J(λp),(μq),bs,a,λ (f )(z) – α +  = αz+∞k= p j=(λj+)k– q j=(μj+)k–( a+ a+k) s( (a+k,b,s,λ) (a+,b,s,λ)) (α+–k) k! akz k ( – α)z –∞k= p j=(λj+)k– q j=(μj+)k–( a+ a+k)s( (a+k,b,s,λ) (a+,b,s,λ)) (α––k) k! akzk , and thus F(z)  α|z| +∞k=| p j=(λj+)k– q j=(μj+)k–||( a+ a+k)s||( (a+k,b,s,λ) (a+,b,s,λ))|| (α+–k) k! ||ak| · |z|k ( – α)|z| –∞k=| p j=(λj+)k– q j=(μj+)k–||( a+ a+k)s||( (a+k,b,s,λ) (a+,b,s,λ))|| (α––k) k! ||ak| · |z|k < α+∞k=| p j=(λj+)k– q j=(μj+)k–||( a+ a+k) s||( (a+k,b,s,λ) (a+,b,s,λ))| (k–α–) k! |ak| ( – α) –∞k=| p j=(λj+)k– q j=(μj+)k–||( a+ a+k)s||( (a+k,b,s,λ) (a+,b,s,λ))| (k–α+) k! |ak|  ,

(7)

The next theorem aims to provide coefficient inequalities for functions f (z) belonging to the classSs,a,λ,∗p),(μq),b(α).

Theorem  Let α∈ [, ). If f (z) ∈Ss,a,λ,∗

p),(μq),b(α), then |ak|  k!  ( – α) k–   a+ k a+  s  (a + , b, s, λ) (a + k, b, s, λ)  · q j=(μj+ )k– p j=(λj+ )k– k– j=   +( – α) j–   k∈ N \ {}. (.)

The result is sharp.

Proof Let p(z) := z(Js,a,λ (λp),(μq),b)(f )(z) J(λp),(μq),bs,a,λ (f )(z) – α  – α =  + cz+ cz+· · · .

Then p(z) is analytic and

p() =  and  p(z)>  (z∈ U). We note easily that

z Js,a,λp),(μq),b(f )(z) =( – α)p(z) + αJs,a,λp),(μq),b(f )(z). With the help of (.), we find

(k – ) k! p j=(λj+ )k– q j=(μj+ )k–  a+  a+ k s (a + k, b, s, λ) (a + , b, s, λ)  ak = ( – α)·  ck–+ k–  m= p j=(λj+ )m– q j=(μj+ )m–  a+  a+ m s (a + m, b, s, λ) (a + , b, s, λ)  amck–m m!  (.) for k∈ N \ {}.

By making use of the Carathéodory lemma [, p.], we have (k – ) k! p j=(λj+ )k– q j=(μj+ )k– aa+ + ks  (a + k, b, s, λ) (a + , b, s, λ)  · |ak|  ( – α) ·   + k–  m= p j=(λj+ )m– q j=(μj+ )m– aa+ m+ s  (a + m, b, s, λ) (a + , b, s, λ)  |am| m!  . (.)

We have to prove that inequality (.) holds true for k∈ N \ {}. We will proceed by the principle of mathematical induction. If k =  in (.), we obtain

|a|  ( – α) q j=(μj+ ) p j=(λj+ ) aa+ + s  (a + , b, s, λ) (a + , b, s, λ)  . (.)

(8)

Now suppose that (.) is satisfied for k n. Then, from (.) and (.), we have that n (n + )! p j=(λj+ )n q j=(μj+ )n a+ n + a+  s  (a + n + , b, s, λ) (a + , b, s, λ)  · |an+|  ( – α)   + n  m= p j=(λj+ )m– q j=(μj+ )m– aa+ m+ s  (a + m, b, s, λ)(a + , b, s, λ) |am| m!   ( – α)   + n  m= ( – α) m–  m–  j=   +( – α) j–    ( – α) n  j=   +( – α) j–   , (.) whence |ak|  k!  ( – α) k–   aa+ k+ s  (a + , b, s, λ) (a + k, b, s, λ)  · q j=(μj+ )k– p j=(λj+ )k– k– j=   +( – α) j–   k∈ N \ {}.

The result is sharp for the function f (z) given by

f(z) = z +( – α) k–   a+ k a+  s (a + , b, s, λ) (a + k, b, s, λ)  · q j=(μj+ )k– p j=(λj+ )k– k–  j=   +( – α) j–   zk k∈ N \ {}. (.) 

3 Distortion inequalities for the function classSs,a,λ,

p),(μq),b(

α

)

In this section, we establish distortion inequalities for functions belonging to the class

Ss,a,λ,∗

(λp),(μq),b(α). These inequalities are given in the following theorem. Theorem  Let f(z)Ss,a,λ,∗p),(μq),b(α) and  α < . Then

r– ( – α)r ∞  k= k! k–  aa+ k+ s  (a + k, b, s, λ)(a + , b, s, λ) · q j=(μj+ )k– p j=(λj+ )k– k– j=   +( – α) j–    f(z)  r + ( – α)r ∞  k= k! k–  aa+ k+ s  (a + k, b, s, λ)(a + , b, s, λ) · q j=(μj+ )k– p j=(λj+ )k– k– j=   +( – α) j–   |z| = r <  (.)

(9)

and  – ( – α)r ∞  k= k· k! k–  aa+ k+ s  (a + k, b, s, λ)(a + , b, s, λ) · q j=(μj+ )k– p j=(λj+ )k– k– j=   +( – α) j–    f(z)   + ( – α)r ∞  k= k· k! k–  aa+ k+ s  (a + , b, s, λ) (a + k, b, s, λ)  · q j=(μj+ )k– p j=(λj+ )k– k– j=   +( – α) j–   |z| = r < . (.)

Proof Let f (z)A be given by (.). Then, making use of Theorem , we find f(z)  |z| + ∞  k= |ak| · zk  r + ( – α)r ∞  k= k! k–  aa+ k+ s  (a + , b, s, λ)(a + k, b, s, λ) · q j=(μj+ )k– p j=(λj+ )k– k– j=   +( – α) j–   |z| = r <  (.) and f(z)  |z| – ∞  k= |ak| · zk  r – ( – α)r ∞  k= k! k–  aa+ k+ s  (a + k, b, s, λ)(a + , b, s, λ) · q j=(μj+ )k– p j=(λj+ )k– k– j=   +( – α) j–   |z| = r < . (.)

From (.), we also have that f(z)  + ∞  k= k· |ak| · zk–   + ( – α)r ∞  k= k· k! k–  aa+ k+ s  (a + , b, s, λ) (a + k, b, s, λ)  · q j=(μj+ )k– p j=(λj+ )k– k– j=   +( – α) j–   |z| = r <  (.)

(10)

and f(z)  – ∞  k= k· |ak| · zk   – ( – α)r ∞  k= k· k! k–  aa+ k+ s  (a + , b, s, λ) (a + k, b, s, λ)  · q j=(μj+ )k– p j=(λj+ )k– k– j=   +( – α) j–   |z| = r < . (.) We thus obtain the results (.) and (.) asserted by Theorem . 

4 Extreme points

This section is devoted to presenting the extreme points of the function classSs,a,λ,∗p),(μq),b(α). Let Ss,a,λ,∗p),(μq),b(α) be the subclass ofSs,a,λ,∗p),(μq),b(α) that consists in all functions f (z)A, which satisfy inequality (.). Then the extreme points of Ss,a,λ,∗p),(μq),b(α) are given by the following theorem. Theorem  Let f(z) := z (.) and fk(z) := z + k!( – α) (k – α) pj=(μj+ )k– q j=(λj+ )k– aa+ k+ s  (a + , b, s, λ) (a + k, b, s, λ)  zk k∈ N \ {}. (.) Then f(z)∈ Ss,a,λ,∗p),(μq),b(α) ( α < )

if and only if it can be expressed in the following form:

f(z) = ∞  k= γkfk(z)  γk> ; ∞  k= γk=   . (.)

Proof Suppose that

f(z) = ∞  k= γkfk(z) = z + ∞  k= γk k!( – α) (k – α) p j=(μj+ )k– q j=(λj+ )k– ·  a+ k a+  s (a + , b, s, λ)(a + k, b, s, λ) zk. (.)

(11)

Then ∞  k= (k – α) k! p j=(λj+ )k– q j=(μj+ )k– aa+ k+ s  (a + k, b, s, λ)(a + , b, s, λ) · γk k!( – α) (k – α) p j=(μj+ )k– q j=(λj+ )k– aa+ k+ s (a + , b, s, λ) (a + k, b, s, λ) = ( – α) ∞  k= γk= ( – α)( – γ)   – α. (.)

Thus, by the definition of the function class Ss,a,λ,∗p),(μq),b(α), we have

f ∈ Ss,a,λ,∗

p),(μq),b(α) ( α < ). Conversely, if

f ∈ Ss,a,λ,∗p),(μq),b(α) ( α < ), then, by using (.), we may set

γk= (k – α) ( – α)k! p j=(λj+ )k– q j=(μj+ )k– aa+ k+ s  (a + k, b, s, λ)(a + , b, s, λ) |ak| k∈ N \ {}, (.)

which implies that

f(z) =



k=

γkfk.

The proof of Theorem  is thus completed. 

5 The Fekete-Szegö problem

In this section, we shall obtain the Fekete-Szegö inequality for functions in the class

Ss,a,λ,∗

(λp),(μq),b(α) when

s> , a>  and  α < .

We need to recall an important lemma due to Ma and Minda [] in order to prove our result involving Fekete-Szegö inequality.

Lemma  If

(12)

is an analytic function inU such that  p(z)>  (z∈ U), then c– νc  ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ –ν +   ),  ( ν  ), ν –   ).

When ν<  or ν > , the equality holds true if and only if

p(z) = + z

 – z (.)

or one of its rotations. If  < ν < , then the equality holds true if and only if

p(z) = + z

 – z (.)

or one of its rotations. If ν = , then the equality holds true if and only if

p(z) =   + ω    + z  – z  +   – ω    – z  + z  ( ω  ) (.)

or one of its rotations. If ν = , then the equality holds true if and only if p(z) is the reciprocal

of one of the functions such that the equality holds true in the case ν= .

Theorem  Let s> , a> ,  α <  and λj> – (j = , . . . , p), μj> – (j = , . . . , q). If fSs,a,λ,∗ p),(μq),b(α), then a– τ a  ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ( – α) q j=(μj+) p j=(λj+) · (a+ a+)s( (a+,b,s,λ) (a+,b,s,λ))(–ν + ) (τ σ), ( – α) q j=(μj+) p j=(λj+) · (a+ a+)s( (a+,b,s,λ) (a+,b,s,λ))  τ  σ), ( – α) q j=(μj+) p j=(λj+) · (a+ a+)s( (a+,b,s,λ) (a+,b,s,λ))(ν – ) (τ σ),

(13)

where ν:= ( – α)  τp  j=  λj+  λj+  q j=  μj+  μj+   a+  a+  s a+  a+  s ·  (a + , b, s, λ) (a + , b, s, λ)  (a + , b, s, λ) (a + , b, s, λ)  –   , (.) σ=   p  j=  λj+  λj+  q j=  μj+  μj+   a+  a+  s ·  (a + , b, s, λ) (a + , b, s, λ)  (a + , b, s, λ) (a + , b, s, λ)  (.) and σ= ( – α) ( – α) p  j=  λj+  λj+  q j=  μj+  μj+   a+  a+  s ·  (a + , b, s, λ) (a + , b, s, λ)  (a + , b, s, λ) (a + , b, s, λ)  . (.)

The result is sharp.

Proof For fSs,a,λ,∗p),(μq),b(α), let

p(z) = z(J(λp),(μq),bs,a,λ )(f )(z) Js,a,λ (λp),(μq),b(f )(z) – α  – α =  + cz+ cz+· · · . (.)

Then, with the help of (.), we have

a= ( – α)cq j=(μj+ ) p j=(λj+ )  a+  a+  s (a + , b, s, λ) (a + , b, s, λ)  (.) and a= ( – α) q j=(μj+ ) p j=(λj+ )  a+  a+  s (a + , b, s, λ) (a + , b, s, λ)  c+ ( – α)c  . (.) Therefore, we find a– τ a= ( – α) q j=(μj+ ) p j=(λj+ )  a+  a+  s (a + , b, s, λ) (a + , b, s, λ)  c+ ( – α)c  – τ ( – α)c q j=(μj+ ) p j=(λj+ )  a+  a+  s (a + , b, s, λ) (a + , b, s, λ)  = ( – α) q j=(μj+ ) p j=(λj+ )  a+  a+  s (a + , b, s, λ) (a + , b, s, λ)  c– c( – α)

(14)

·  τp  j= λ j+  λj+  q j= μ j+  μj+   a+  a+  sa+  a+  s ·  (a + , b, s, λ) (a + , b, s, λ)  (a + , b, s, λ) (a + , b, s, λ)  –   . (.) We thus write a– τ a= ( – α) q j=(μj+ ) p j=(λj+ )  a+  a+  s (a + , b, s, λ) (a + , b, s, λ)  c– νc , (.) where ν: = ( – α)  τp  j= λ j+  λj+  q j= μ j+  μj+   a+  a+  s a+  a+  s ·  (a + , b, s, λ) (a + , b, s, λ)  (a + , b, s, λ) (a + , b, s, λ)  –   . (.)

The result asserted by Theorem  follows by applying Lemma . Moreover, if τ < σor τ > σ, then the equality holds true if and only if

Js,a,λp),(τq),b(f )(z) = z

( – ez)(–α) ∈ R). (.)

For σ< τ < σ, the equality holds true if and only if

Js,a,λ

p),(τq),b(f )(z) =

z

( – ez)–α ∈ R). (.)

If τ = σ, then the equality holds true if and only if

Js,a,λp),(τq),b(f )(z) =  z ( – ez)(–α) [(+ω)/] z ( + ez)(–α) [(–ω)/] = z [( – ez)+ω( + ez)–ω]–α (θ∈ R;   ω  ). (.)

Finally, when τ = σ, the equality holds true if and only if Js,a,λp),(τq),b(f )(z) satisfies the

fol-lowing condition: z(Js,a,λ p),(τq),b) (f )(z) Js,a,λp),(τq),b(f )(z) = ( – α)p(z) + α, (.) where  p(z)=   + ω    + z  – z  +   – ω    – z  + z  ( < ω < ). (.)  We conclude this paper by mentioning that, by suitably specializing the parameters in-volved, our main results (Theorem  to Theorem ) would yield a number of (known or

(15)

new) results for much simpler function classes, which were investigated in several earlier works by employing many special cases of the new generalized Srivastava-Attiya operator.

Competing interests

The authors declare that they have no competing interests. Authors’ contributions

All authors completed the paper together. All authors read and approved the final manuscript. Author details

1Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada. 2Department of Mathematics and Computer Science, University of Québec at Chicoutimi, Chicoutimi, Québec G7H 2B1, Canada.

Received: 30 September 2014 Accepted: 22 January 2015 References

1. Srivastava, HM, Attiya, AA: An integral operator associated with the Hurwitz-Lerch zeta function and differential subordination. Integral Transforms Spec. Funct. 18, 207-216 (2007)

2. Cho, NE, Kim, IH, Srivastava, HM: Sandwich-type theorems for multivalent functions associated with the Srivastava-Attiya operator. Appl. Math. Comput. 217, 918-928 (2010)

3. Rˇaducanu, D, Srivastava, HM: A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch zeta function. Integral Transforms Spec. Funct. 18, 933-943 (2007)

4. Srivastava, HM, R˘aducanu, D, S˘al˘agean, GS: A new class of generalized close-to-starlike functions defined by the Srivastava-Attiya operator. Acta Math. Sin. Engl. Ser. 29, 833-840 (2013)

5. Srivastava, HM, Choi, J: Series Associated with Zeta and Related Functions. Kluwer Academic, Dordrecht (2001) 6. Srivastava, HM: Some formulas for the Bernoulli and Euler polynomials at rational arguments. Math. Proc. Camb.

Philos. Soc. 129, 77-84 (2000)

7. Srivastava, HM, Choi, J: Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier, Amsterdam (2012) 8. Srivastava, HM: A new family of theλ-generalized Hurwitz-Lerch zeta functions with applications. Appl. Math. Inf. Sci.

8, 1485-1500 (2014)

9. Srivastava, HM: Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials. Appl. Math. Inf. Sci. 5, 390-444 (2011)

10. Srivastava, HM: Generating relations and other results associated with some families of the extended Hurwitz-Lerch zeta functions. SpringerPlus 2, Article ID 67 (2013)

11. Srivastava, HM, Gaboury, S: New expansion formulas for a family of theλ-generalized Hurwitz-Lerch zeta functions. Int. J. Math. Math. Sci. 2014, Article ID 131067 (2014)

12. Srivastava, HM, Jankov, D, Pogány, TK, Saxena, RK: Two-sided inequalities for the extended Hurwitz-Lerch zeta function. Comput. Math. Appl. 62, 516-522 (2011)

13. Srivastava, HM, Saxena, RK, Pogány, TK, Saxena, R: Integral and computational representations of the extended Hurwitz-Lerch zeta function. Integral Transforms Spec. Funct. 22, 487-506 (2011)

14. Srivastava, HM, Manocha, HL: A Treatise on Generating Functions. Halsted, New York (1984)

15. Mathai, AM, Saxena, RK, Haubold, HJ: The H-Function: Theory and Applications. Springer, New York (2010) 16. Srivastava, HM, Gupta, KC, Goyal, SP: The H-Functions of One and Two Variables with Applications. South Asian

Publishers, New Delhi (1982)

17. Prajapat, JK, Bulboac˘a, T: Double subordination preserving properties for a new generalized Srivastava-Attiya operator. Chin. Ann. Math. 33, 569-582 (2012)

18. Noor, KI, Bukhari, SZH: Some subclasses of analytic and spiral-like functions of complex order involving the Srivastava-Attiya integral operator. Integral Transforms Spec. Funct. 21, 907-916 (2010)

19. Choi, JH, Saigo, M, Srivastava, HM: Some inclusion properties of a certain family of integral operators. J. Math. Anal. Appl. 276, 432-445 (2002)

20. Cho, NE, Srivastava, HM: Argument estimation of certain analytic functions defined by a class of multiplier transformation. Math. Comput. Model. 37, 39-49 (2003)

21. Jung, IB, Kim, YC, Srivastava, HM: The Hardy space of analytic functions associated with certain one-parameter families of integral operators. J. Math. Anal. Appl. 176, 138-147 (1993)

22. Bernardi, SD: Convex and starlike univalent functions. Trans. Am. Math. Soc. 135, 429-446 (1969)

23. Carlson, BC, Shaffer, DB: Starlike and prestarlike hypergeometric functions. SIAM J. Math. Anal. 15, 737-745 (1984) 24. Owa, S, Srivastava, HM: Univalent and starlike generalized hypergeometric functions. Can. J. Math. 39, 1057-1077

(1987)

25. Dziok, J, Srivastava, HM: Classes of analytic functions associated with the generalized hypergeometric function. Appl. Math. Comput. 103, 1-13 (1999)

26. Dziok, J, Srivastava, HM: Certain subclasses of analytic functions associated with the generalized hypergeometric function. Integral Transforms Spec. Funct. 14, 7-18 (2003)

27. Hohlov, YE: Operators and operations in the class of univalent functions. Izv. Vysš. Uˇcebn. Zaved., Mat. 10, 83-89 (1978)

28. Ruscheweyh, S: New criteria for univalent functions. Proc. Am. Math. Soc. 49, 109-115 (1975)

29. Duren, PL: Univalent Functions. Grundlehren der Mathematischen Wissenschaften, vol. 259. Springer, Berlin (1983) 30. Ma, WC, Minda, D: A unified treatment of some special classes of functions. In: Proceedings of the Conference on

Complex Analysis (Tianjin, 1992). Conf. Proc. Lecture Notes in Anal., vol. 1, pp. 157-169. International Press, Cambridge (1994)

Referenties

GERELATEERDE DOCUMENTEN

Partijen binnen Het Bewaarde Land arrangement vinden het van belang om kinderen dichter bij de natuur te brengen via directe natuurer- varingen, vinden de partijen die

Keywords: Thriving, job crafting, human resource practices, higher education, strengths use, deficit correction, well-being, academics, performance, contextual performance,

In this work it was further found that in addition to the molecular weight, only changes in the chitosan concentration had a significant influence on the viscosity of the

En ese sentido, Dietrich (2001: 30) demuestra que hay varios sistemas tupí- guaraníes en que este marcador personal de tercera persona, i-, funciona como marco predicativo

ontsluitingstechnieken voor slib en mest op de biogasproductie is een globaal overzicht verkregen van het perspectief van verschillende methoden van voorbehandeling/ontsluiting

daan Switserland en sentraal Frankryk besoek word. Die toer geskied beeltemal buite die nor- male toeristeroete. Die toer word bepaald vir Geskiedenis-,

Mostly negative influence Information mostly biased but slightly helped with my ratings of the amount of Moderately negative and moderately positive Information moderately

The A-efficiency and D-efficiency of designs are studied to compare the SLSE with the OLSE, and our results indicate that the optimal designs based on the SLSE can be much