• No results found

Longitudinal Assessment of Radiation Therapy Effects on White Matter Structures: a Diffusion MRI Study

N/A
N/A
Protected

Academic year: 2021

Share "Longitudinal Assessment of Radiation Therapy Effects on White Matter Structures: a Diffusion MRI Study"

Copied!
33
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Longitudinal Assessment of Radiation Therapy Effects on White Matter Structures:

a Diffusion MRI Study

V.A. Bodiut

1,4

, S. David

1

, A. de Luca, PhD

1

, M.E.P. Philippens, PhD

2

, Hesham Elhalawani

3

, Yao

Ding

3

, Abdallah Mohamed

3

, Caroline Chung

3

, Sameh Radwan

3

, Clifton D. Fuller

3

, J.J.C.

Verhoeff, MD

2

, A. Leemans, PhD

1

1

Image Sciences Institute, University Medical Center, Utrecht, The Netherlands

2

Department of Radiotherapy, University Medical Center, Utrecht, The Netherlands

3

University of Texas, MD Anderson Cancer Center, Houston, Texas, United States

4

Institute for Interdisciplinary Studies, University of Amsterdam, Amsterdam, The Netherlands

Author Note

The work presented here was conducted in close collaboration with The University of Texas, MD

Anderson Cancer Center, Houston, Texas, United States.

(2)

Research Project Front Page

Project Title: “Longitudinal Assessment of Radiation Therapy Effects on White Matter

Structures: a Diffusion MRI Study”

Credits: 36 EC

Period: 22.01.2018 - 29.07.2018

Student: Victor A. Bodiut, 11260653

Daily Supervisor: Szabolcs David

General Supervisor and Examiner 1: dr. Alexander Leemans

UvA Representative and Examiner 2: dr. Gustav Strijkers

Research Institute: PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht.

Program: MSc in Brain and Cognitive Sciences, Cognitive Neuroscience track, University of

Amsterdam.

(3)

Abstract

Purpose: To demonstrate the long-term, regional sensitivity of white matter (WM) structures to

radiation exposure during clinical protocols of radiation therapy (RT), using diffusion MRI

(dMRI).

Methods and Materials: The sample consisted of 38 patients (20 females), showing clinical

heterogeneity (e.g., age, pathology, tumor location, treatment planning). The imaging dataset

included 38 individual CT scans and 393 MRI / dMRI scans assessed pre-operative,

post-operative pre-RT, and post-RT longitudinally. Following a pre-processing pipeline tuned for

standard neuro-oncological settings, we performed an atlas-based ROI analysis and estimated

DTI-based metrics for all datapoints. We achieved the end stage of having the ROI delineation,

ROI volume, DTI metrics (i.e., FA, MD, AD and RD) and RT dose in the same space.

Results: FA showed a stronger pre – post RT decreasing trend in WM that received higher doses

compared to WM that received lower doses. Longitudinally, a similar trend but a shift in

amplitude was observed (i.e., lower FA at higher doses). MD showed a clear increasing trend in

WM that received higher doses, compared to WM that received lower doses. This was again the

most evident between the pre- and first post-RT assessments, but persisted in time. The volume

of ROIs showed variability (i.e., up to 60-80% change) both within and between patients.

Conclusions: The volume of structures is changing in time, and this must be accounted for due

to partial voluming effects. Results overlooking this are prone to error. Then, there seems to be a

longitudinal effect (consistent with literature) of dose levels on DTI metrics of WM structures,

with higher doses leading to a decrease in FA and increase in MD. In summary, when using an

adequate and robust analysis pipeline, dMRI proves to be insightful in longitudinal

neuro-oncological settings.

(4)

Introduction

Radiation therapy (RT) is a common treatment procedure for both primary and metastatic

tumors in the brain, often in combination with surgery and chemotherapy. As radiation is not

selective to tumor cells but targets all cells in the process of replication, the efficacy of RT is

hindered by the radio-resistance of healthy tissue following ionization (Dawson & Jaffray, 2007;

Cox, Stetz, & Pajak, 1995; Kelley, Knisely, Symons, & Ruggieri, 2016). The effect of radiation

on brain tissue is dynamic and involves structures outside the targeted tumor volume, be it

directly or indirectly (Schultheiss, Kun, Ang, & Stephens, 1995; Tofilon, Fike, Tofilona, &

Fikeb, 2016). Despite the substantial advances in RT technology and application (i.e., increased

precision and conformality, intensity-modulated techniques, fractionated stereotactic

radiosurgery; Bucci, Bevan, & Roach, 2005; Baskar, Lee, Yeo, & Yeoh, 2012), regional

sensitivity to radiation dosing is not well documented. This is especially true for white matter

(WM) structures. Current clinical protocols include guidelines of maximum dosing for brain

parenchyma and several organs of risk (e.g., brain stem, optic chiasm, hippocampi), but regional

constraints on major WM structures are not a standard consideration (Gondi et al., 2014; Connor

et al., 2016; Nagesh et al., 2008).

Radiation-induced WM damage has been reported to include axonal injury,

demyelination, neuro-inflammation, and necrosis (e.g., Nagesh et al., 2008; Kumar et al., 2000;

Wang et al., 2009). These structural deficits seem to correlate in time with both verbal and

non-verbal functional cognitive impairment, including executive functioning, working memory,

visuospatial processing, and decision making (Khong et al., 2006; Robbins et al., 2012; Douw et

al., 2009; Kerchner et al., 2012). Temporally, the radiation-induced cognitive impairment has

been divided into three phases post-RT: acute (<2 weeks), early-delayed (2 weeks to 3-4 months)

(5)

and late-delayed (6+ months). Notably, while acute and early-delayed damage seems to be

usually transient, late-delayed damage is usually permanent. This progressive decline affects the

physical and mental health of long-term survivors and impairs their quality of life

(Greene-Schloesser et al., 2012). Late-delayed cognitive impairment currently occurs in 50-90% of

survivors (Johannesen, Lien, Hole, & Lote, 2003; Meyers & Brown, 2006), and this population is

increasing with RT advancement (Krex et al., 2007; Stupp et al., 2005). Besides high doses (e.g.,

60 Gy total) known to be dangerous, lower doses (e.g., 20 Gy total) have been reported to cause

late-delayed damage as well (Chapman et al., 2012). Therefore, information on regional WM

sensitivity to RT dosage in the long-term is crucial to the RT planning and patient well-being.

Diffusion MRI (dMRI) has been a powerful, non-invasive imaging technique to study

WM structure in the brain in the past years. The fundamental principle behind dMRI is that the

Brownian motion of water molecules that is dependent on the surrounding tissue structure can be

imaged. As opposed to grey matter (GM) where the structure tends to be spherical or isotropic,

WM structure tends to be elongated or anisotropic. This is reflected in the diffusion metrics,

making the technique the most sensitive to WM anatomy (for comprehensive descriptions see

Jones & Leemans, 2011; Jones, 2010; Basser & Jones, 2002). Neuro-oncological research has

placed dMRI as a potential technique for tumor diagnosis (Kono et al., 2001), surgical planning

(Nimsky et al., 2005, 2005), pre-treatment prediction of tumor response (Mardor et al., 2004),

monitoring early efficacy of treatment (Chenevert et al., 2000), early WM damage post-radiation

(Nagesh et al., 2008; Price et al., 2003; Sleurs et al., 2017; Haris et al., 2008), and more recently

late-delayed effects of RT on WM (Chapman, Nazem-Zadeh, Lawrence, Tsien, & Cao, 2011;

Chapman et al., 2012; Connor et al., 2016, 2017; Zhu et al., 2016).

(6)

Thus, we aimed to build upon the recent relevant findings and study the long-term effects

of brain RT on WM structures using dMRI. Specifically, we were interested in how the

susceptibility of WM structures to radiation varies across regions and dose levels on the

long-term.

Methods and Materials

Sample and treatment (see Table 1 for an overview)

The sample consisted of 38 patients (20 females) who were treated at the University of

Texas MD Anderson Cancer Center, Houston, Texas. The dataset showed heterogeneity on

several levels, including age (i.e., range 24-88, Mdn = 57), pathology (glioblastoma – 62%),

anatomical location of tumor, type of surgery, radiation technique (IMRT – 74%), dosage (60Gy

in 30 fractions – 59%), and chemotherapy (Temodar – 64%).

All patients without any MRI / dMRI scans post-RT were excluded from the final

analysis (N = 6), resulting in analyzable data from 32 patients.

CT acquisition

The 38 baseline CT scans (used for RT planning) were acquired on a Philips Brilliance

Big Bore scanner, with a tube potential of 120 kVp, using a matrix size of 512 × 512 × 87 and

0.98 × 0.98 × 3.0 mm voxel size.

MRI acquisition (see Table 2 in Appendix for an overview)

MR imaging was acquired at multiple timepoints for each patient: pre-operative,

post-operative pre-RT, and post-RT longitudinally (see Table 3 in Appendix for an overview). The

dataset included 393 usable MRI / dMRI scans (range 2-43, Mdn = 8 per patient).

The MRI acquisition used a T1-weighted sequence on a GE Medical Systems scanner of

type Signa HDxt in 91% of cases (SIGNA EXCITE - 5%; Signa HDx - 4%; Optima MR450w -

(7)

1%) with an 8HRBRAIN coil in 97% of cases, 256 × 256 matrix size and 220 × 220 mm

2

field of

view (FOV). The other acquisition settings showed greater heterogeneity both between and

within patients in terms of field strength (i.e., 1.5T - 52%, 3T - 48%), TE, TR, and voxel

dimensions (i.e., 0.85 × 0.85 × 6.5 mm

3

- 57%, 0.85 × 0.85 × 3.5 mm

3

- 35%, varied for the rest).

The dMRI images were acquired using 27 gradient directions with a diffusion weighting

factor of b = 1200 s/mm

2

in 93% of cases and b = 1000 s/mm

2

for the rest, with one

non-diffusion weighted gradient direction of b = 0 s/mm

2

.

dMRI analysis pipeline (see Figure 1)

(8)

The diffusion data was processed using the MATLAB-based (MATLAB Release 2014b,

The MathWorks, Inc., Natick, MA) software ExploreDTI (version 4.8.6; Leemans, Jeurissen,

Sijbers, & Jones, 2009; Leemans & Jones, 2009).

To increase registration performance and reduce computational power, we designed a

cropping algorithm based on the standardized Hounsfield scaling of CT acquisition (i.e., with

values around -1000 for air, 0 for water and 200+ for bone; see also Feeman, 2010) that outputs a

bounding box of the brain. The same cropping settings were used for the relevant dose map for

each patient (i.e., having the dose map in the same native space).

Then, the DWI data at each timepoint was corrected for motion and distortion (using the

b = 0 s/mm

2

) and registered to the CT space using rigid registration based on mutual information

(Elastix; Klein, Staring, Murphy, Viergever, & Pluim, 2010). The quality and spatial alignment of

registration was visually inspected (i.e., overlays, movie loops, physically implausible signal

maps, residual maps; also see Mori, & Leemans, 2011; Vos et al., 2017; Leemans & Jones,

2009). Initially, this registration step was planned to use the MRI images at each timepoint as

targets (to take advantage of the anatomical contrast information), but the heterogeneity in MRI

acquisition was simply too high (as described previously). Nevertheless, registering to CT space

proved to be both feasible and adequate quality-wise.

Following, a robust estimation of the diffusion tensor (DTI) was done with the in-house

algorithm REKINDLE (robust extraction of kurtosis indices with linear estimation; Tax, Otte,

Viergever, Dijkhuizen, & Leemans, 2015).

We then performed an atlas-based ROI analysis (Mori et al., 2008) on the diffusion data

by warping the WM template in MNI152 (Montreal Neurological Institute) space from

(9)

DTI metrics based on pre-defined volumetric ROIs in the pre-registered native space, aiming for

a high spatial alignment between anatomical and scalar data for each datapoint. As the dose maps

were also in the native space, all relevant information (i.e., ROI delineation, ROI volume, DTI

metrics and RT dose) was available in the same space.

Therefore, we computed the following metrics per ROI: average fractional anisotropy

(FA; ranging from 0 to 1, +SD), average mean diffusivity (MD; multiplied by 10k, +SD),

average axial diffusivity (AD; multiplied by 10k, +SD), average radial diffusivity (RD;

multiplied by 10k, +SD), volume (in mm

3

), mean dose (+SD), max dose (+SD), and median dose

(+SD).

To avoid the bias of remaining cancerous tissue or liquid (i.e., post-operatively) on the

DTI metrics, all ROIs touching the tumor location were excluded manually (N = 301; M = 10 per

patient; see Figure 2).

Figure 2. Atlas labels overlaid on CT for one patient, used for the manual exclusion of ROIs

(10)

Exploratory Results

For a showcase of concept, we selected data from one patient with homogeneous

acquisition settings (i.e., field strength, voxel dimensions, bvalue, etc.). Then, we applied a

dichotomous selection between WM ROIs that received a low mean dose (i.e., lower than 10Gy;

N = 7) and a high mean dose (i.e., higher than 40Gy; N = 5) and investigated the changes

between the two groups in FA, MD and volume. No statistical analysis was performed at this

point.

FA showed a stronger decreasing trend in WM that received higher doses compared to

WM that received lower doses between the pre- and post-RT assessments. Across time, the trend

was similar between groups, but a clear shift in FA amplitude was observed (i.e., lower FA at

higher doses; see Figure 3).

(11)

Figure 3. Comparing the change in FA between WM receiving low (blue) and high (red) mean

RT dose. The dashed lines represent FA of individual ROIs, while the solid lines represent the

average FA across ROIs, per group.

MD showed a clear increasing trend in WM that received higher doses, compared to WM

that received lower doses. Once again, this was the most evident between the pre- and post-RT

assessments, but persisted in time (see Figure 4).

Figure 4. Comparing the change in MD between WM receiving low (blue) and high (red) mean

RT dose. The dashed lines represent MD of individual ROIs, while the solid lines represent the

average MD across ROIs, per group.

The volume of ROIs showed variability (i.e., up to 60-80% change) both within and

between patients. No clear trend in relation to RT dose was observed, but while no ROIs showed

(12)

a decrease in volume in the lower dose group, several ROIs showed shrinkage in the higher dose

group (see Figure 5).

Figure 5. Comparing the change in volume between WM receiving low (blue) and high (red)

mean RT dose. The dashed lines represent volume of individual ROIs, while the solid lines

represent the average volume across ROIs, per group.

Discussion

First, the fact that the volume of individual ROIs is changing in time has been neglected

in the literature. To our interpretation, this is partly a biological phenomenon where the actual

tissue volume is changing, and partly an imaging acquisition phenomenon where the

heterogeneity of acquisition settings leads to a change in volume. Notably, the results show that

even with homogeneous acquisition settings, the change in volume is relevant.

(13)

As established in the last years, partial volume effects (PVE) have an influence on the

diffusion metrics (Alexander, Hasan, Lazar, Tsuruda, & Parker, 2001). The principle behind PVE

is that at tissue interfaces (e.g., CSF – WM), the limited imaging resolution of a voxel will

include a mixture of tissue types, leading to measuring different anatomical structures which

cannot be separated. Critically, Vos et al. (2011) demonstrated that the thickness, structure,

orientation, and curvature of a WM bundle significantly modulates the PVE (for a representation

of the phenomenon see Figure 6, with permission from Vos et al., 2011).

Therefore, the volume change of WM structures observed here modulates the respective

PVE, in turn varying the DTI metrics. Analyses failing to acknowledge this effect are prone to

error. To our knowledge, previous work on regional WM sensitivity to RT (e.g., Chapman,

Nazem-Zadeh, Lawrence, Tsien, & Cao, 2011; Chapman et al., 2012; Connor et al., 2016, 2017;

Zhu et al., 2016) have not accounted for this effect.

(14)

Figure 6. “Schematic representation of the partial volume effect (PVE) in a 3D object. The PVE

is defined as the volume-to-surface ratio of an object. For a cylinder, which has a circular

cross-section (indicated as the shaded area in A), this can be simplified to a circle, which has a

surface-to-circumference ratio. Further simplification yield that the PVE scales with 1/R (with R the

radius of the circle), showing that increasing volume means a reduction in PVE. This is shown in

B, where a small and big circle have been plotted on a square grid. The relative number of PVE

voxels (light gray) compared to voxels enclosed completely by the circle (dark gray) is larger for

a small circle (left) than for a big circle (right)”.

Second, the effects of RT dosage on the DTI metrics seem to be consistent with most of

the literature. Specifically, higher doses lead to a steeper decrease in FA and increase in MD,

especially in the early-delayed timeframe. The persistent trend across time in MD is informative

about the slow progressive WM change in the late-delayed timeframe. The similar trend, but

amplitude shift observed in FA is also interesting, and could be interpreted as meaning that

regions where higher doses are prescribed are already more affected by cancerous tissue

infiltration. As expected, variability in the way RT dose influences DTI metrics can be observed

both between patients and between WM structures. However, once again, these results need to be

verified after accounting for the modulating effect of volume change.

Third, we hope to have proven here that by using an adequate and robust pipeline tuned

for typical clinical data, it is feasible to study detailed anatomical changes longitudinally

following radiation treatment. The key of the analysis was having all relevant information in the

same (native) space. To our surprise, using the CT space instead of the MRI space as registration

target for the DWI data proved to be satisfactory. Still, we aimed for a conservative approach in

(15)

anatomical (e.g., demyelination, inflammation) and cognitive (e.g., causing dementia)

interpretation due to the limitations in data acquisition and quality.

Future directions

We are currently working on a similar analysis as presented above but including the

whole spectrum of RT dosage across WM ROIs. Then, we plan a large-scale statistical inference

modelling the slopes (β) of change in DTI metrics per increase unit of dose (Gy; similar but

simpler to the one described in Zhu et al., 2016). One of the main aims of the analysis will be to

account for (i.e., regress out) the effect of volume change described earlier and so quantify its

influence on the results. Generally, research in the field should aim for a robust analysis pipeline

and proceed with care when it comes to strong anatomical and cognitive interpretation, giving

the typical clinical data quality.

Clinically, the dMRI sequence has proven to be insightful in neuro-oncological settings

(as described previously), including longitudinal follow-up of RT effects (as described here).

Therefore, we argue that it should be included in the standard acquisition protocol for treatment

of brain cancer, and that WM should be included in the guidelines of radiation planning,

complementing the established organs at risk. The acquisition protocol should be informed by

the limitations pointed out in research, such as less heterogeneity in scanner settings, more

isotropic voxel dimensions, and adequate b-value and gradient settings.

(16)

References

Alexander, A. L., Hasan, K. M., Lazar, M., Tsuruda, J. S., & Parker, D. L. (2001). Analysis of

partial volume effects in diffusion‐tensor MRI. Magnetic Resonance in Medicine, 45(5),

770-780.

Baskar, R., Lee, K. A., Yeo, R., & Yeoh, K. W. (2012). Cancer and radiation therapy: current

advances and future directions. International journal of medical sciences, 9(3), 193.

Basser, P. J., & Jones, D. K. (2002). Diffusion‐tensor MRI: theory, experimental design and data

analysis – a technical review. NMR in Biomedicine, 15(7‐8), 456-467.

Bucci, M. K., Bevan, A., & Roach, M. (2005). Advances in radiation therapy: conventional to

3D, to IMRT, to 4D, and beyond. CA: a cancer journal for clinicians, 55(2), 117-134.

Chapman, C. H., Nagesh, V., Sundgren, P. C., Buchtel, H., Chenevert, T. L., Junck, L., Cao, Y.

(2012). Diffusion tensor imaging of normal-appearing white matter as biomarker for

radiation-induced late delayed cognitive decline. International Journal of Radiation

Oncology Biology Physics, 82(5), 2033–2040. https://doi.org/10.1016/j.ijrobp.2011.01.068

Chapman, C. H., Nazem-Zadeh, M. R., Lawrence, T. S., Tsien, C. I., & Cao, Y. (2011). Regional

Variation of White Matter Radiation Sensitivity: A Tract Based Spatial Statistics (TBSS)

Study. International Journal of Radiation Oncology*Biology*Physics, 81(2), S298.

https://doi.org/10.1016/j.ijrobp.2011.06.1777

Chenevert, T. L., Stegman, L. D., Taylor, J. M., Robertson, P. L., Greenberg, H. S., Rehemtulla, A.,

& Ross, B. D. (2000). Diffusion magnetic resonance imaging: an early surrogate marker of

therapeutic efficacy in brain tumors. JNCI: Journal of the National Cancer Institute, 92(24),

(17)

2029-2036.

Connor, M., Karunamuni, R., McDonald, C., Seibert, T., White, N., Moiseenko, V.,

Hattangadi-Gluth, J. A. (2017). Regional susceptibility to dose-dependent white matter damage after

brain radiotherapy. Radiotherapy and Oncology, 123(2), 209–217.

https://doi.org/10.1016/j.radonc.2017.04.006

Connor, M., Karunamuni, R., Mcdonald, C., White, N., Pettersson, N., Moiseenko, V.,

Hattangadi-Gluth, J. (2016). White matter damage after RT Dose-dependent white matter damage after

brain radiotherapy. Radiotherapy and Oncology, 121, 209–216.

https://doi.org/10.1016/j.radonc.2016.10.003

Cox, J. D., Stetz, J., & Pajak, T. F. (1995). Toxicity criteria of the Radiation Therapy Oncology

Group (RTOG) and the European organization for research and treatment of cancer

(EORTC). International Journal of Radiation Oncology, Biology, Physics, 31(5), 1341–

1346. https://doi.org/10.1016/0360-3016(95)00060-C

Douw, L., Klein, M., Fagel, S. S., van den Heuvel, J., Taphoorn, M. J., Aaronson, N. K., & Beute,

G. N. (2009). Cognitive and radiological effects of radiotherapy in patients with low-grade

glioma: long-term follow-up. The Lancet Neurology, 8(9), 810-818.

Greene-Schloesser, D., Robbins, M. E., Peiffer, A. M., Shaw, E. G., Wheeler, K. T., & Chan, M. D.

(2012). Radiation-induced brain injury: A review. Frontiers in Oncology, 2(July), 1–18.

https://doi.org/10.3389/fonc.2012.00073

Haris, M., Kumar, S., Raj, M. K., Das, K. J. M., Sapru, S., Behari, S., & Gupta, R. K. (2008). Serial

diffusion tensor imaging to characterize radiation-induced changes in normal-appearing

white matter following radiotherapy in patients with adult low-grade gliomas. Radiation

(18)

medicine, 26(3), 140.

Johannesen, T. B., Lien, H. H., Hole, K. H., & Lote, K. (2003). Radiological and clinical

assessment of long-term brain tumour survivors after radiotherapy. Radiotherapy and

Oncology, 69(2), 169-176.

Jones, D. K. (2010). Diffusion mri. Oxford University Press.

Jones, D. K., & Leemans, A. (2011). Diffusion tensor imaging. Magnetic Resonance

Neuroimaging: Methods and Protocols, 127-144.

Kerchner, G. A., Racine, C. A., Hale, S., Wilheim, R., Laluz, V., Miller, B. L., & Kramer, J. H.

(2012). Cognitive processing speed in older adults: relationship with white matter integrity.

PloS one, 7(11), e50425.

Khong, P. L., Leung, L. H., Fung, A. S., Fong, D. Y., Qiu, D., Kwong, D. L., & Chan, G. C. (2006).

White matter anisotropy in post-treatment childhood cancer survivors: preliminary evidence

of association with neurocognitive function. Journal of Clinical Oncology, 24(6), 884-890.

Klein, S., Staring, M., Murphy, K., Viergever, M. A., & Pluim, J. P. (2010). Elastix: a toolbox for

intensity-based medical image registration. IEEE transactions on medical imaging, 29(1),

196-205.

Kono, K., Inoue, Y., Nakayama, K., Shakudo, M., Morino, M., Ohata, K., & Yamada, R. (2001).

The role of diffusion-weighted imaging in patients with brain tumors. American Journal of

Neuroradiology, 22(6), 1081-1088

Krex, D., Klink, B., Hartmann, C., von Deimling, A., Pietsch, T., Simon, M., & Weller, M. (2007).

Long-term survival with glioblastoma multiforme. Brain, 130(10), 2596-2606.

(19)

Mardor, Y., Roth, Y., Ocherashvilli, A., Spiegelmann, R., Tichler, T., Daniels, D., & Orenstein, A.

(2004). Pretreatment prediction of brain tumors response to radiation therapy using high

b-value diffusion-weighted MRI. Neoplasia, 6(2), 136-142.

Meyers, C. A., & Brown, P. D. (2006). Role and relevance of neurocognitive assessment in clinical

trials of patients with CNS tumors. Journal of clinical oncology, 24(8), 1305-1309.

Mori, S., Oishi, K., Jiang, H., Jiang, L., Li, X., Akhter, K., et al. (2008). Stereotaxic white matter

atlas based on diffusion tensor imaging in an ICBM template. Neuroimage, 40(2), 570–82.

doi:10.1016/ j.neuroimage.2007.12.035.

Nagesh, V., Tsien, C. I., Chenevert, T. L., Ross, B. D., Lawrence, T. S., Junick, L., & Cao, Y.

(2008). Radiation-induced changes in normal-appearing white matter in patients with

cerebral tumors: a diffusion tensor imaging study. International Journal of Radiation

Oncology*Biology*Physics, 70(4), 1002-1010.

Nimsky, C., Ganslandt, O., Hastreiter, P., Wang, R., Benner, T., Sorensen, A. G., & Fahlbusch, R.

(2005). Intraoperative diffusion-tensor MR imaging: shifting of white matter tracts during

neurosurgical procedures—initial experience. Radiology, 234(1), 218-225.

Nimsky, C., Ganslandt, O., Hastreiter, P., Wang, R., Benner, T., Sorensen, A. G., & Fahlbusch, R.

(2005). Preoperative and intraoperative diffusion tensor imaging-based fiber tracking in

glioma surgery. Neurosurgery, 56(1), 130-138.

Price, S. J., Burnet, N. G., Donovan, T., Green, H. A. L., Peña, A., Antoun, N. M., & Gillard,

J. H. (2003). Diffusion tensor imaging of brain tumours at 3T: a potential tool for assessing

white matter tract invasion? Clinical radiology, 58(6), 455-462.

(20)

Robbins, M., Greene-Schloesser, D., Peiffer, A. M., Shaw, E., Chan, M. D., & Wheeler, K. T.

(2012). Radiation-induced brain injury: A review. Frontiers in oncology, 2, 73.

Schultheiss, T. E., Kun, L. E., Ang, K. K., & Stephens, L. C. (1995). Radiation response of the

central nervous system. International Journal of Radiation Oncology, Biology, Physics,

31(5), 1093–1112. https://doi.org/10.1016/0360-3016(94)00655-5

Sleurs, C., Lemiere, J., Christiaens, D., Billiet, T., Verly, M., Blommaert, J., & Deprez, S. (2017).

White matter density in solid tumor survivors using advanced diffusion models.

Stupp, R., Mason, W. P., Van Den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M. J., &

Curschmann, J. (2005). Radiotherapy plus concomitant and adjuvant temozolomide for

glioblastoma. New England Journal of Medicine, 352(10), 987-996.

Tax, C. M., Otte, W. M., Viergever, M. A., Dijkhuizen, R. M., & Leemans, A. (2015). REKINDLE:

robust extraction of kurtosis INDices with linear estimation. Magnetic resonance in

medicine, 73(2), 794-808.

Tofilon, P. J., Fike, J. R., Tofilona, P. J., & Fikeb, J. R. (2016). The Radioresponse of the Central

Nervous System : A Dynamic Process The Radioresponse of the Central Nervous System : A

Dynamic Pr, 153(4), 357–370.

Vos, S. B., Jones, D. K., Viergever, M. A., & Leemans, A. (2011). Partial volume effect as a hidden

covariate in DTI analyses. Neuroimage, 55(4), 1566-1576.

Vos, S. B., Tax, C. M., Luijten, P. R., Ourselin, S., Leemans, A., & Froeling, M. (2017). The

importance of correcting for signal drift in diffusion MRI. Magnetic resonance in medicine,

(21)

Wang, S., Wu, E. X., Qiu, D., Leung, L. H. T., Lau, H.-F., & Khong, P.-L. (2009). Longitudinal

Diffusion Tensor Magnetic Resonance Imaging Study of Radiation-Induced White Matter

Damage in a Rat Model. Cancer Research, 69(3), 1190–1198.

https://doi.org/10.1158/0008-5472.CAN-08-2661

Zhu, T., Chapman, C. H., Tsien, C., Kim, M., Spratt, D. E., Lawrence, T. S., & Cao, Y. (2016).

Effect of the Maximum Dose on White Matter Fiber Bundles Using Longitudinal Diffusion

Tensor Imaging. International Journal of Radiation Oncology Biology Physics, 96(3), 696–

705. https://doi.org/10.1016/j.ijrobp.2016.07.010

(22)

Tables

Table 1. Patient clinical information.

Table 1 Patient information Patient nr. Sex Age at diagnosis (years)

Pathology (tumor type) Spatial location Surgery Radiation technique Total dose

(Gy) Fractionation Chemotherapy

1 F 66.1 Glioblastoma R frontal Subtotal resection IMRT 60 30 Temodar

2 M 40.4 Anaplastic astrocytoma Brain stem N.A. IMRT 54 30 N.A.

3 M 53.4 Glioblastoma R temporal Total resection IMRT 60 30 Temodar

4 M 54.0 Glioblastoma R parietotemporal Partial resection IMRT 60 30 N.A.

5 F 61.6 Glioblastoma R frontal Total resection IMRT 60 30 Temodar

6 M 58.0 Glioblastoma L frontoparietal Partial resection IMRT 60 30 Temodar

7 F 55.4 Glioblastoma L parietal Subtotal resection IMRT 60 30 Temodar

8 F 50.8 Gliosarcoma R frontal Total resection IMRT 60 30 Temodar

9 M 63.7 Glioblastoma R parietal Total resection IMRT 60 30 Temodar

10 F 68.1 Metastatic non-small cell carcinoma of

the lung Multiple

Craniotomy and resection

(NOS) Stereotactic radiosurgery 20 1 N.A.

11 M 60.9 Oligodendroglioma L frontal Subtotal resection IMRT 50 27 Temodar

12 M 28.1 Metastatic high-grade spindle cell

carcinoma L parietal Total resection WBI 30 10 N.A.

13 M 53.4 Glioblastoma L frontal Total resection IMRT 60 30 Temodar

14 M 57.7 Metastatic sarcoma Multiple N.A. Stereotactic radiosurgery 20 1 N.A.

15 M 59.5 Glioblastoma R frontal Total resection IMRT 60 30 Temodar

16 F 56.4 Glioblastoma R temporal Subtotal resection IMRT 60 30 Temodar

17 F 38.8 Glioblastoma R frontal Total resection 3D Conformal 60 30 Temodar

18 M 33.4 Metastatic Melanoma Multiple N.A. WBI 30 10 N.A.

19 F 47.2 Glioblastoma L frontal Total resection IMRT 60 30 Temodar

20 M 87.8 Glioblastoma L parietal

Left frontoparietal craniotomy, resection

(NOS)

IMRT 50 20 N.A.

21 F 24.6 Metastatic Melanoma Multiple N.A. WBI 30 10 N.A.

22 M 44.4 Glioblastoma R temporal Craniotomy and resection

(NOS) IMRT 60 30 Temodar

23 M 48.0 Glioblastoma L temporal Total resection IMRT 60 30 Temodar

24 F 37.5 Anaplastic astrocytoma R parietal Total resection IMRT 57 30 Temodar

25 M 65.3 Glioblastoma R parietal Subtotal resection IMRT 50 25 Temodar

26 F 58.5 Metastatic carcinoma of breast L frontal N.A. Stereotactic radiosurgery 18 1 N.A.

27 F 73.1 Glioblastoma L temporal Subtotal resection IMRT 60 30 Temodar

28 F 56.2 Glioblastoma L frontal Craniotomy and resection

(NOS) IMRT 60 30 Temodar

29 M 50.4 Glioblastoma L temporal Craniotomy and resection

(NOS) IMRT 60 30

Temodar, sorafenib

30 F 70.8 Progressive anaplastic

oligodendroglioma R frontal

Craniotomy and resection

(NOS) IMRT 57 30 Temodar

31 F 76.4 Anaplastic astrocytoma R frontotemporal N.A. IMRT 40 15 N.A.

32 F 69.4 Glioblastoma R parietal Total resection IMRT 60 30 Temodar

33 F 65.7 Metastatic ovarian carcinoma R frontotemporoparietal Total resection WBI 30 10 N.A.

34 F 45.9 Glioblastoma R temporal Subtotal resection IMRT 60 30 Temodar

35 F 58.5 Glioblastoma L frontal Total resection IMRT 60 30 Temodar

36 M 25.7 Glioblastoma L temporal Total resection IMRT 60 30 Temodar

37 M 64.4 Glioblastoma L frontal Total resection IMRT 60 30 Temodar

38 F 61.5 Metastatic small cell carcinoma Multiple N.A. WBI 30 12 N.A.

Abbreviations: F = female;

M = male. L = left; R = right.

NOS = 'not otherwise specified'; N.A. = 'not

applicable'. WBI = 'whole-brain irradiation'; IMRT = 'intensity-modulated radiation therapy'. N.A. = 'not applicable'.

(23)

Appendix

Table 2. MRI / dMRI acquisition settings.

Table 2 MRI / dMRI

acquisition Scan nr. (total) Scan nr. (per patient) Bval (s/mm²) TE (ms) TR (ms) Voxel dim. (mm3) x y z Scanner Manufacturer Field strength (T) Coil 1 1 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 2 2 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 3 3 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 4 4 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 5 5 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 6 1 1200 81.3 8750 2.585 0.859 0.859 3.500 SIGNA HDx GE MEDICAL SYSTEMS 3 8HRBRAIN 7 2 1200 89 10000 4.801 0.859 0.859 6.500 SIGNA EXCITE GE MEDICAL SYSTEMS 1.5 8HRBRAIN 8 3 1200 80.4 8750 2.585 0.859 0.859 3.500 SIGNA EXCITE GE MEDICAL SYSTEMS 3 8HRBRAIN 9 4 1200 100.5 10000 4.801 0.859 0.859 6.500 SIGNA EXCITE GE MEDICAL SYSTEMS 1.5 8HRBRAIN 10 5 1200 91.7 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 11 6 1200 100.5 10000 4.801 0.859 0.859 6.500 SIGNA EXCITE GE MEDICAL SYSTEMS 1.5 8HRBRAIN 12 7 1200 91.9 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 13 8 1200 92.6 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 14 9 1200 92.3 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 15 10 1200 92.6 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 16 11 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 17 12 1200 93.6 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 18 13 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 19 14 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 20 15 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 21 16 1200 92.6 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 22 17 1200 92.3 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 23 18 1200 92.3 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 24 1 1200 90.8 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 25 2 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 26 3 1200 90.8 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 27 4 1200 91 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 28 5 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 29 6 1200 91.1 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 30 7 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 31 8 1200 91.3 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 32 9 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN

(24)

33 10 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 34 1 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 35 2 1200 92.6 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 36 3 1200 92.6 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 37 1 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 38 2 1200 90.4 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 39 3 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 40 4 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 41 5 1200 90.4 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 42 6 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 43 7 1200 90.6 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8NVHead 44 8 1200 92.6 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 45 9 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 46 10 1200 91.2 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 47 11 1200 91.1 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 48 12 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 49 13 1200 92.6 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 50 14 1200 102.8 10000 4.801 0.859 0.859 6.500 Optima MR450w GE MEDICAL SYSTEMS 1.5 Head 24 51 15 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 52 16 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 53 1 1200 90.9 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 54 2 1200 90.8 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 HNS Head 55 3 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 56 4 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 57 5 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 58 6 1200 90.4 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 59 7 1200 90.4 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 60 8 1200 90.5 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 61 9 1200 90.5 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 62 10 1200 92.6 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 63 11 1200 90.4 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 64 12 1200 92.6 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 65 13 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 66 14 1200 90.4 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 HNS Head 67 15 1200 90.4 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 68 16 1200 90.4 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 69 1 1200 90.4 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 70 2 1200 90.4 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 71 3 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 72 4 1200 90.4 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 73 5 1200 90.4 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN

(25)

74 6 1200 90.4 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 75 1 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 76 2 1200 92.6 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 77 3 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 78 4 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 79 5 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 80 6 1200 92.6 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 81 7 1200 93.1 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 82 1 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 83 2 1200 91.6 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 84 3 1200 91.1 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 85 4 1200 92.6 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 86 5 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 87 6 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 88 1 1200 92.6 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 89 2 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 90 3 1200 90.4 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 91 4 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 92 5 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 93 6 1200 90.4 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 94 1 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 95 2 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 96 3 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 97 4 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 98 5 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 99 6 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 100 7 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 101 8 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 102 9 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 103 10 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 104 11 1200 101.4 10000 5.713 0.938 0.938 6.500 Optima MR450w GE MEDICAL SYSTEMS 1.5 Head 24 105 1 1000 87.6 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 106 2 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 107 3 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 108 4 1200 91 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 109 5 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 110 6 1200 92.6 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 111 7 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 112 8 1200 92.6 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 113 9 1200 90.7 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 114 10 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN

(26)

115 1 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 116 2 1200 92.5 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 117 3 1200 92.5 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 118 4 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 119 1 1200 92.3 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 120 2 1200 91.8 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 121 3 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 122 4 1200 102.2 10000 5.246 0.898 0.898 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 123 1 1200 102.2 10000 5.246 0.898 0.898 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 124 2 1200 94.7 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 125 3 1200 94.7 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 126 4 1200 94.7 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 127 5 1200 94.7 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 128 6 1200 94.7 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 129 7 1200 91 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 130 8 1000 91.7 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 131 9 1200 91 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 132 10 1200 94.7 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 133 11 1200 94.7 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 HNS Head 134 12 1200 113.2 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 HEAD 135 1 1200 92.6 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 136 2 1200 92.8 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 137 3 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 138 4 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 139 1 1200 79.1 8750 2.585 0.859 0.859 3.500 SIGNA HDx GE MEDICAL SYSTEMS 3 8HRBRAIN 140 2 1200 74.2 8750 2.585 0.859 0.859 3.500 SIGNA EXCITE GE MEDICAL SYSTEMS 3 8HRBRAIN 141 3 1200 75.2 10000 4.800 0.859 0.859 6.500 SIGNA EXCITE GE MEDICAL SYSTEMS 1.5 8HRBRAIN 142 4 1200 89 10000 4.801 0.859 0.859 6.500 SIGNA EXCITE GE MEDICAL SYSTEMS 1.5 8HRBRAIN 143 5 1200 79.1 8750 2.585 0.859 0.859 3.500 SIGNA HDx GE MEDICAL SYSTEMS 3 8HRBRAIN 144 6 1200 79.1 8750 2.585 0.859 0.859 3.500 SIGNA HDx GE MEDICAL SYSTEMS 3 8HRBRAIN 145 7 1000 89.2 8750 3.076 0.938 0.938 3.500 SIGNA HDx GE MEDICAL SYSTEMS 3 8HRBRAIN 146 8 1000 84.2 8750 3.076 0.938 0.938 3.500 SIGNA HDx GE MEDICAL SYSTEMS 3 8HRBRAIN 147 9 1000 86.3 8750 3.076 0.938 0.938 3.500 SIGNA HDx GE MEDICAL SYSTEMS 3 8HRBRAIN 148 10 1000 86.9 8750 3.076 0.938 0.938 3.500 SIGNA HDx GE MEDICAL SYSTEMS 3 8HRBRAIN 149 11 1200 78.5 10000 4.801 0.859 0.859 6.500 SIGNA EXCITE GE MEDICAL SYSTEMS 1.5 8HRBRAIN 150 12 1000 102.2 8750 3.076 0.938 0.938 3.500 SIGNA HDx GE MEDICAL SYSTEMS 3 8HRBRAIN 151 13 1200 90.4 8750 2.585 0.859 0.859 3.500 SIGNA HDx GE MEDICAL SYSTEMS 3 8HRBRAIN 152 14 1000 94.1 8750 3.076 0.938 0.938 3.500 SIGNA HDx GE MEDICAL SYSTEMS 3 8HRBRAIN 153 15 1000 99 8750 3.076 0.938 0.938 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 154 16 1000 98.7 8750 3.076 0.938 0.938 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 155 17 1000 98.8 8750 3.076 0.938 0.938 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN

(27)

156 18 1000 100.4 8750 3.076 0.938 0.938 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 157 19 1000 97.7 8750 3.076 0.938 0.938 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 158 20 1000 96.7 8750 3.076 0.938 0.938 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 159 21 1000 86.7 8750 3.076 0.938 0.938 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 160 22 1000 86.7 8750 3.076 0.938 0.938 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 161 23 1000 86.7 8750 3.076 0.938 0.938 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 162 24 1000 86.7 8750 3.076 0.938 0.938 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 163 25 1000 86.7 8750 3.076 0.938 0.938 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 164 26 1000 86.7 8750 3.076 0.938 0.938 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 165 27 1000 86.7 8750 3.076 0.938 0.938 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 166 28 1000 99 8750 3.076 0.938 0.938 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 167 29 1000 97.2 8750 3.076 0.938 0.938 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 168 30 1000 90.6 8750 3.076 0.938 0.938 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 169 31 1000 91.7 8750 3.076 0.938 0.938 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 170 32 1000 97.2 8750 3.076 0.938 0.938 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 171 33 1200 90.4 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 HDNV Head 172 34 1200 90.4 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 173 35 1200 90.4 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 174 36 1200 90.4 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 175 37 1200 90.4 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 176 38 1200 92.6 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 177 39 1200 90.4 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 178 40 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 179 41 1200 90.4 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 180 42 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 181 1 1200 91 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 182 2 1200 92.6 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 183 3 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 184 4 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 185 5 1200 92.6 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 186 6 1200 92.6 8000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 187 7 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 188 8 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 189 9 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 190 1 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 191 2 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 192 3 1200 92 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 193 4 1200 92.6 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 194 5 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 195 6 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 196 7 1200 91.8 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN

(28)

197 8 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 198 9 1200 92 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 199 10 1200 92.3 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 200 11 1200 92.3 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 201 12 1200 92.4 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 202 13 1200 92.6 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 203 14 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 204 15 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 205 16 1200 91.2 10175 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 206 17 1200 92.4 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 207 18 1200 92.4 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 208 19 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 209 20 1200 92.9 10175 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 210 21 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 211 22 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 212 23 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 213 1 1200 101.6 10000 5.713 0.938 0.938 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 214 2 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 215 3 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 216 1 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 217 2 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 218 3 1200 90.4 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 219 4 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 220 5 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 221 6 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 222 1 1200 78.5 10000 4.801 0.859 0.859 6.500 SIGNA EXCITE GE MEDICAL SYSTEMS 1.5 8HRBRAIN 223 2 1200 80.2 8750 2.585 0.859 0.859 3.500 SIGNA EXCITE GE MEDICAL SYSTEMS 3 8HRBRAIN 224 3 1200 89 10000 4.801 0.859 0.859 6.500 SIGNA EXCITE GE MEDICAL SYSTEMS 1.5 8HRBRAIN 225 4 1200 91.1 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 226 5 1200 90.8 8750 2.585 0.859 0.859 3.500 SIGNA HDx GE MEDICAL SYSTEMS 3 8HRBRAIN 227 6 1200 92.6 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 228 7 1200 91 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 229 8 1200 90.9 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 230 9 1200 92.6 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 231 10 1200 92.6 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 232 11 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 233 12 1200 92.6 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 234 13 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 235 14 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 236 15 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 237 16 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN

(29)

238 17 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 239 18 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 240 19 1200 92.6 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 241 20 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 242 1 1200 83.2 10000 5.713 0.938 0.938 6.500 SIGNA EXCITE GE MEDICAL SYSTEMS 1.5 8HRBRAIN 243 2 1200 89 10000 4.801 0.859 0.859 6.500 SIGNA EXCITE GE MEDICAL SYSTEMS 1.5 8HRBRAIN 244 3 1200 81.2 8750 2.585 0.859 0.859 3.500 SIGNA HDx GE MEDICAL SYSTEMS 3 8HRBRAIN 245 4 1200 89 10000 4.801 0.859 0.859 6.500 SIGNA EXCITE GE MEDICAL SYSTEMS 1.5 8HRBRAIN 246 5 1200 89 10000 4.801 0.859 0.859 6.500 SIGNA EXCITE GE MEDICAL SYSTEMS 1.5 8HRBRAIN 247 6 1200 92.6 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 248 7 1200 91.6 8750 2.585 0.859 0.859 3.500 SIGNA HDx GE MEDICAL SYSTEMS 3 8HRBRAIN 249 8 1200 92.6 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 250 9 1200 91.3 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 251 10 1200 91.6 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 252 11 1200 91.4 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 253 12 1200 91.5 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 254 13 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 255 14 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 256 15 1200 91.6 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 257 16 1200 91.9 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 258 17 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 259 1 1200 100.5 10000 4.801 0.859 0.859 6.500 SIGNA EXCITE GE MEDICAL SYSTEMS 1.5 8HRBRAIN 260 2 1200 100.5 10000 4.801 0.859 0.859 6.500 SIGNA EXCITE GE MEDICAL SYSTEMS 1.5 8HRBRAIN 261 3 1200 100.5 10000 4.801 0.859 0.859 6.500 SIGNA EXCITE GE MEDICAL SYSTEMS 1.5 8HRBRAIN 262 4 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 263 5 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 264 6 1200 90.4 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 265 7 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 266 8 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 267 9 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 268 10 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 269 11 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 270 12 1200 90.4 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 271 13 1200 93.2 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 272 14 1200 92.6 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 273 15 1200 90.4 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 274 16 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 275 17 1200 90.4 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 276 18 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 277 19 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 278 20 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN

(30)

279 1 1200 94 10250 3.076 0.938 0.938 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 280 2 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 281 3 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 282 4 1200 94 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 283 1 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 284 2 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 285 1 1200 90.4 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 286 2 1200 90.5 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 287 3 1200 90.4 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 288 4 1200 91.1 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 289 5 1200 91.2 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 290 6 1000 88.3 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 291 7 1200 91 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 292 8 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 293 9 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 294 10 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 295 11 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 296 12 1200 90.4 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 297 13 1200 92.6 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 298 1 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 299 2 1200 92.6 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 300 3 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 301 4 1200 90.4 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 302 5 1200 90.4 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 303 6 1200 90.4 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 304 7 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 305 8 1200 90.4 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 306 1 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 307 2 1200 90.6 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 308 3 1200 90.8 8750 2.585 0.859 0.859 3.500 SIGNA EXCITE GE MEDICAL SYSTEMS 3 8HRBRAIN 309 4 1200 91 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 310 5 1200 90.7 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 311 6 1200 90.6 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 312 7 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 313 8 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 314 9 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 315 10 1200 92.6 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 316 11 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 317 12 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 318 1 1200 93.4 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 319 2 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN

(31)

320 3 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 321 4 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 322 5 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 323 6 1200 93.2 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 324 7 1200 92.8 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 325 8 1200 91 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 326 9 1200 93 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 327 10 1200 92.6 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 328 11 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 329 12 1200 92.6 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 330 13 1200 92.9 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 331 14 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 332 15 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 333 16 1200 92 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 HNS Head 334 17 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 335 1 1200 93.4 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 336 2 1200 91.1 8750 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 337 3 1200 91 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 338 4 1200 92.6 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 339 5 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 340 6 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 341 7 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 342 8 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 343 1 1200 92.6 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 344 2 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 345 3 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 346 4 1200 92.6 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 347 1 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 348 2 1200 107.2 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 349 1 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 350 2 1200 91 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 351 3 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 352 4 1200 95.9 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 353 5 1200 93.9 8750 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 354 6 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 355 7 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN 356 8 1200 94.4 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 357 9 1200 94.7 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 358 10 1200 94.4 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 359 11 1200 94.7 10250 2.585 0.859 0.859 3.500 Signa HDxt GE MEDICAL SYSTEMS 3 8HRBRAIN 360 12 1200 102.7 10000 4.801 0.859 0.859 6.500 Signa HDxt GE MEDICAL SYSTEMS 1.5 8HRBRAIN

Referenties

GERELATEERDE DOCUMENTEN

Results In all subjects fibre tractography resulted in a satisfactory anatomical representation of the pubovisceral muscle, perineal body, anal - and urethral sphincter complex

De hier beschreven processen zijn vooral werkzaam in delen waar de bodem een hoog organisch stofgehalte heeft (ongeplagde deel Oude maatje en lage deel Westelijke maatje)..

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers).. Please check the document version of

Voor het onderzoek krijgt u vocht toegediend via een infuus (een apparaat waarmee vloeistof langzaam in uw ader wordt gespoten).. Het infuus loopt in één uur in tot

Sections 2 through 5 discuss the basic design decisions of the library: choice of pro- gramming language, representation of multiprecision integers, error handling, and

Utilizing data from published tuberculosis (TB) genome-wide association studies (GWAS), we use a bioinformatics pipeline to detect all polymorphisms in linkage disequilibrium (LD)

In this paper we will consider the frequency-domain approach as a special case of sub- band adaptive ltering having some desired proper- ties and point out why

How do participants of the skateboard scene in Puebla, Mexico, use fun as subcultural practice to negotiate the dynamic between small-scale commerce and