• No results found

136. Liu Z, Li Z. Molecular imaging in tracking tumor-specific cytotoxic T lymphocytes (CTLs). Theranostics.

2014;4:990-1001.

137. Rini JN, Palestro CJ. Imaging of infection and inflammation with 18F-FDG-labeled leukocytes. Q J Nucl Med Mol Imaging. 2006;50:143-146.

138. Ballinger JR, Gnanasegaran G. Radiolabelled leukocytes for imaging inflammation: how radiochemistry affects clinical use. Q J Nucl Med Mol Imaging. 2005;49:308-318.

139. de Vries EF, Roca M, Jamar F, Israel O, Signore A. Guidelines for the labelling of leucocytes with

99mTc-HMPAO. Eur J Nucl Med Mol Imaging. 2010:37:842-848.

140. Signore A, Soroa V, de Vries E. Radiolabelled white blood cells or FDG for imaging of inflammation and infection? Q J Nucl Med Mol Imaging. 2009;53:23-25.

141. Bell D, Jackson M, Millar AM, Nicoll JJ, Connell M, Muir AL. The acute inflammatory response to myocardial infarction: Imaging with indium-111 labelled autologous neutrophils. Br Heart J.

1987;57:23-27.

142. Loutsios A, Farahi N, Simmonds R, Cullum I, Gillett D, Solanki C, et al. Clinical application of autologous technetium-99m-labelled eosinophils to detect focal eosinophilic inflammation in the lung. Thorax. 2015;70:1085-1086.

143. Adonai N, Nguyen KN, Walsh J, Iyer M, Toyokuni T, Phelps ME, et al. Ex vivo cell labeling with 64 Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography. Proc Natl Acad Sci U S A. 2002;99:3030-3035.

144. Griessinger CM, Kehlbach R, Bukala D, Wiehr S, Bantleon R, Cay F, et al. In vivo tracking of Th1 cells by PET reveals quantitative and temporal distribution and specific homing in lymphatic tissue. J Nucl Med. 2014;55:301-307.

145. Botti C, Negri DR, Seregni E, Ramakrishna V, Arienti F, Maffioli L, et al. Comparison of three different methods for radiolabelling human activated T lymphocytes. Eur J Nucl Med. 1997;24:497-504.

146. Pittet MJ, Grimm J, Berger CR, Tamura T, Wojtkiewicz G, Nahrendorf M, et al. In vivo imaging of T cell delivery to tumors after adoptive transfer therapy. Proc Natl Acad Sci U S A. 2007;104:12457-12461.

147. Berglund D, Karlsson M, Palanisamy S, Carlsson B, Korsgren O, Eriksson O. Imaging the in vivo fate of human T cells following transplantation in immunoincompetent mice - implications for clinical cell therapy trials. Transpl Immunol. 2013;29:105-108.

148. Sharif-Paghaleh E, Leech J, Sunassee K, Ali N, Sagoo P, Lechler RI, et al. Monitoring the efficacy of dendritic cell vaccination by early detection of 99mTc-HMPAO-labelled CD4+ T cells. Eur J Immunol.

2014;44:2188-2191.

149. Griessinger CM, Maurer A, Kesenheimer C, Kehlbach R, Reischl G, Ehrlichmann W, et al. 64Cu antibody-targeting of the T-cell receptor and subsequent internalization enables in vivo tracking of lymphocytes by PET. Proc Natl Acad Sci U S A. 2015;112:1161-1166.

150. Melder RJ, Brownell AL, Shoup TM, Brownell GL, Jain RK. Imaging of activated natural killer cells in mice by positron emission tomography: Preferential uptake in tumors. Cancer Res. 1993;53:5867-5871.

151. Jha P, Golovko D, Bains S, Hostetter D, Meier R, Wendland MF, et al. Monitoring of natural killer cell immunotherapy using noninvasive imaging modalities. Cancer Res. 2010;70:6109-6113.

152. Wang H, Cao F, Li J, Li Y, Liu X, Wang L, et al. Homing of cytokine-induced killer cells during the treatment of acute promyelocytic leukemia. Int J Hematol. 2014;100:165-170.

2

153. Ivancevic V, Wolter A, Munz DL. Nonspecific bowel activity in imaging inflammation with Tc-99m labelled monoclonal anti-NCA-90 Fab’ fragment MN3. Nuklearmedizin. 2001;40:71-74.

154. Peltier P, Potel G, Lovat E, Baron D, Chatal JF. Detection of lung and bone infection with anti-granulocyte monoclonal antibody BW 250/183 radiolabelled with 99mTc. Nucl Med Commun.

1993;14:766-774.

155. Richter WS, Ivancevic V, Meller J, Lang O, Le Guludec D, Szilvazi I, et al. 99mTc-besilesomab (scintimun®) in peripheral osteomyelitis: Comparison with 99mTc-labelled white blood cells. Eur J Nucl Med Mol Imaging. 2011;8:899-910.

156. Love C, Tronco GG, Palestro CJ. Imaging of infection and inflammation with 99mTc-fanolesomab. Q J Nucl Med Mol Imaging. 2006;50:113-120.

157. Locke LW, Chordia MD, Zhang Y, Kundu B, Kennedy D, Landseadel J, et al. A novel neutrophil-specific PET imaging agent: CFLFLFK-PEG-64Cu. J Nucl Med. 2009;50:790-797.

158. Stasiuk GJ, Holloway PM, Rivas C, Trigg W, Luthra SK, Morisson Iveson V, et al. 99mTc SPECT imaging agent based on cFLFLFK for the detection of FPR1 in inflammation. Dalton Trans. 2015;44:4986-4993.

159. Zhang Y, Xiao L, Chordia MD, Locke LW, Williams MB, Berr SS, et al. Neutrophil targeting heterobivalent SPECT imaging probe: CFLFLF-PEG-TKPPR-99mTc. Bioconjug Chem. 2010;21:1788-93.

160. van Eerd JE, Oyen WJ, Harris TD, Rennen HJ, Edwards DS, Liu S, et al. A bivalent leukotriene B4 antagonist for scintigraphic imaging of infectious foci. J Nucl Med. 2003;44-1087-1091.

161. van Eerd JE, Rennen HJ, Oyen WJ, Harris TD, Edwards DS, Corstens FH, et al. Scintigraphic detection of pulmonary aspergillosis in rabbits with a radiolabeled leukotriene B4 antagonist. J Nucl Med. 2004;45:1747-1753.

162. van Eerd JE, Oyen WJ, Harris TD, Rennen HJ, Edwards DS, Corstens FH, et al. Scintigraphic imaging of infectious foci with an 111In-LTB4 antagonist is based on in vivo labeling of granulocytes. J Nucl Med. 2005;46:786-793.

163. Rennen HJ, Bleeker-Rovers CP, van Eerd JE, Frielink C, Oyen WJ, Corstens FH, et al. 99mTc-labeled interleukin-8 for scintigraphic detection of pulmonary infections. Chest. 2004;126:1954-1961.

164. Rennen HJ, Frielink C, Brandt E, Zaat SA, Boerman OC, Oyen WJ, et al. Relationship between neutrophil-binding affinity and suitability for infection imaging: comparison of 99mTc-labeled NAP-2 (CXCL-7) and 3 C-terminally truncated isoforms. J Nucl Med. 2004;45:1217-1223.

165. Gratz S, Rennen HJ, Boerman OC, Oyen WJ, Burma P, Corstens FH. 99mTc-interleukin-8 for imaging acute osteomyelitis. J Nucl Med. 2001 ;42:1257-1264.

166. Gratz S, Rennen HJ, Boerman OC, Oyen WJ, Corstens FH. Rapid imaging of experimental colitis with 99mTc-interleukin-8 in rabbits. J Nucl Med. 2001;42:917-923.

167. Aarntzen EH, Hermsen R, Drenth JP, Boerman OC, Oyen WJ. 99mTc-CXCL8 SPECT to monitor disease activity in inflammatory bowel disease. J Nucl Med. 2016;57:398-403.

168. Bleeker-Rovers CP, Rennen HJ, Boerman OC, Wymenga AB, Visser EP, Bakker JH, et al. 99m Tc-labeled interleukin 8 for the scintigraphic detection of infection and inflammation: First clinical evaluation. J Nucl Med. 2007;48:337-343.

169. C. Lapa, T. Reiter, X. Li, R. A. Werner, S. Samnick, R. Jahns, A. K. Buck, G. Ertl, W. R. Bauer, Imaging of myocardial inflammation with somatostatin receptor based PET/CT - A comparison to cardiac MRI. Int J Cardiol. 2015;194:44-49.

170. Li X, Samnick S, Lapa C, Israel I, Buck AK, M. C. Kreissl, et al. 68Ga-DOTATATE PET/CT for the detection of inflammation of large arteries: correlation with 18F-FDG, calcium burden and risk factors.

EJNMMI Res. 2012;2:52.

171. Ambrosini V, Zompatori M, De Luca F, Antonia D, Allegri V, Nanni C, et al. 68Ga-DOTANOC PET/CT allows somatostatin receptor imaging in idiopathic pulmonary fibrosis: Preliminary results. J Nucl Med. 2010;51:1950-1955.

172. Zinnhardt B, Pigeon H, Theze B, Viel T, Wachsmuth L, Fricke IB, et al. Combined PET imaging of the inflammatory tumor microenvironment identifies margins of unique radiotracer uptake. Cancer Res. 2017;77:1831-1841.

173. Ching ASC, Kuhnast B, Damont A, Roeda D, Tavitian B, Dollé F. Current paradigm of the 18-kDa translocator protein (TSPO) as a molecular target for PET imaging in neuroinflammation and neurodegenerative diseases. Insights Imaging. 2012;3:111-119.

174. Turkheimer FE, Rizzo G, Bloomfield PS, Howes O, Zanotti-Fregonara P, Bertoldo A, et al. The methodology of TSPO imaging with positron emission tomography. Biochem Soc Trans.

2015;43:586-592.

175. Chandrupatla DM, Weijers K, Gent YY, de Greeuw I, Lammertsma AA, Jansen G, et al. Sustained macrophage infiltration upon multiple intra-articular injections: an improved rat model of rheumatoid arthritis for PET guided therapy evaluation. Biomed Res Int. 2015;2015:509295.

176. Gent YY, Ahmadi N, Voskuyl AE, Hoetjes N, van Kuijk C, Britsemmer K, et al. Detection of subclinical synovitis with macrophage targeting and positron emission tomography in patients with rheumatoid arthritis without clinical arthritis. J Rheumatol. 2014;41:2145-2152.

177. O’Neill AS, Terry SY, Brown K, Meader L, Wong AM, Cooper JD, et al. Non-invasive molecular imaging of inflammatory macrophages in allograft rejection. EJNMMI Res. 2015;5:69.

178. Blykers A, Schoonooghe S, Xavier C, D’hoe K, Laoui D, D’Huyvetter M, et al. PET imaging of macrophage mannose receptor-expressing macrophages in tumor stroma using 18F-radiolabeled camelid single-domain antibody fragments. J Nucl Med. 2015;56:1265-1271.

179. Put S, Schoonooghe S, Devoogdt N, Schurgers E, Avau A, Mitera T, et al. SPECT imaging of joint inflammation with nanobodies targeting the macrophage mannose receptor in a mouse model for rheumatoid arthritis. J Nucl Med. 2013:54:807-814.

180. Movahedi K, Schoonooghe S, Laoui D, Houbracken I, Waelput W, Breckpot K, et al. Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages. Cancer Res. 2012:72:4165-4177.

181. Terry SY, Boerman OC, Gerrits D, Franssen GM, Metselaar JM, Lehmann S, et al. 111In-anti-F4/80-A3-1 antibody: A novel tracer to image macrophages. Eur J Nucl Med Mol Imaging. 2015;42:1430-1438.

182. Zhou J, Hao G, Weng H, Tsai YT, Baker DW, Sun X, et al. In vivo evaluation of medical device-associated inflammation using a macrophage-specific positron emission tomography (PET) imaging probe. Bioorg Med Chem Lett. 2013;23:2044-2047.

183. Nahrendorf M, Zhang H, Hembrador S, Panizzi P, Sosnovik DE, Aikawa E, Libby P, Swirski FK, Weissleder R. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis.

Circulation. 2008:117:379-387.

Chapter 3

89 Zr-pembrolizumab biodistribution