• No results found

In addition to the purposes described in the previous section, PVDF-based block copolymers can be employed as precursors for functional materials having ferroelectric and multiferroic properties. Multiferroic materials exhibit at least two ferroic orders (ferroelectricity, ferromagnetism and ferroelasticity). Hence, multiferroics are promising candidates for application in multifunctional devices such as switches and memory devices.[95] Magnetoelectric (ME) coupling is expected to be large in multiferroic materials in which ferroelectricity and ferromagnetism coexist. The ME effect is defined as the appearance of an electric polarization upon applying a magnetic field, or vice versa, the appearance of a magnetization upon applying an electric field.[96-98]

Contrary to single-phase magnetoelectrics, ME composites that combine distinct ferroelectric (FE) and ferromagnetic (FM) phases produce a large ME effect at room temperature. Those materials can find potential applications in transducers, sensors and the information storage industry.[95-96] For instance, magnetization and

Chapter 1

polarization can independently encode information in a multiferroic bit.

Furthermore, ME coupling permits data to be written electrically and read magnetically. In composites, the ME coupling is achieved via elastic interaction between a magnetostrictive (ferromagnetic) and piezoelectric (ferroelectric) phase, and this strain-mediated ME effect is strongly dependent on both the composite microstructure and interaction across the composite interface. Apart from the conventional ceramic composites, polymer-based magnetoelectric composites, composed of ferroelectric PVDF and a magnetostrictive phase, have been fabricated in recent years and demonstrated substantial ME coefficients.[96]

We propose a novel route towards well-ordered multiferroic nanocomposites, using block copolymer precursors (Scheme 1.7). Self-assembly of PVDF-containing block copolymers followed by sacrificial block removal results in PVDF nanofoams that are potentially ferroelectric. The use of block copolymers is a convenient way to tailor the nanostructure, and consequently the porosity, of the material.

Backfilling of the porous template with a ferromagnetic material leads to multiferroic PVDF-based nanostructured composites.

Scheme 1.7 Schematic route towards well-ordered multiferroic nanocomposites from PVDF-based block copolymer precursors. Block copolymer self-assembly yields ordered morphologies. A selective etching procedure leads to nanoporous PVDF templates.

Backfilling with a ferromagnetic material results in multiferroic PVDF-based nanohybrids.

General introduction Although synthesis routes towards PVDF-based block copolymers received considerable attention, the preparation of well-defined copolymers with predictable molecular weights and molecular weight distributions remains challenging. Moreover, detailed information about the phase behavior of these materials, involving the interplay between crystallization and microphase separation, is missing. Hence, this thesis is devoted to the synthesis and self-assembly of block copolymers containing poly(vinylidene fluoride) segments into well-ordered nanostructures. Additionally, it explores the use of PVDF-based block copolymers as precursors for nanostructured ferroelectric and multiferroic materials. The outline of this thesis is depicted in Scheme 1.8.

Chapter 2 and 3 discuss the preparation of double-crystalline poly(L-lactide)-block-poly(vinylidene fluoride)-block-poly(L-lactide) (PLLA-b-PVDF-b-PLLA) and poly(3-hexylthiophene)-block-poly(vinylidene fluoride)-block-poly(3-hexylthiophene) (P3HT-b-PVDF-b-P3HT), respectively, via Cu(I)-catalyzed azide-alkyne cycloaddition. PLLA-b-PVDF-b-PLLA (Chapter 2) block copolymers are miscible in the melt, and an alternating crystalline lamellar morphology is formed upon crystallization from the homogeneous melt. The crystallization behavior of the lower temperature crystallizing PLLA component depends strongly on the block composition. Contrary, a microphase separated melt is observed for P3HT-b-PVDF-b-P3HT (Chapter 3), and confined crystallization of P3HT and PVDF occurs within the phase separated domains. The rich phase behavior leads to a remarkable structure characterized by hierarchical order at multiple length scales.

Chapter 4 and 5 focus on the fabrication of well-ordered, and potentially multiferroic, PVDF-based nanocomposites from semicrystalline block copolymers.

Polystyrene-block-poly(vinylidene fluoride)-block-polystyrene (PS-b-PVDF-b-PS) and poly(tert-butyl methacrylate)-block-poly(vinylidene fluoride)-block-poly(tert-butyl methacrylate) (PtBMA-b-PVDF-b-PtBMA) are synthesized via atom transfer radical polymerization from PVDF macroinitiators. Nanoporous PVDF foams and PVDF/nickel nanocomposites are prepared (Chapter 4), and the lamellar morphology and β-phase of PVDF are conserved during the fabrication process. In addition, well-ordered lamellar PVDF/PMAA/Ni and PVDF/PMAA/SiO2

nanocomposites are generated via electroless nickel plating and sol-gel synthesis, respectively (Chapter 5).

Chapter 1

Scheme 1.8 Schematic representation of thesis outline.

Finally, Chapter 6 discusses the multiferroic properties of the nanocomposites fabricated in the previous chapter. The ferroelectric behavior in the block copolymer precursors was studied with local switching measurements and polarization switching was confirmed. Furthermore, room temperature ferromagnetism was found in the PVDF/PMAA/Ni nanocomposites.

1.7 References

1. G. Hougham; P. E. Cassidy; K. Johns; T. Davidson, Fluoropolymers: Synthesis and Properties; Kluwer Academic / Plenum Publishers: New York, 1999.

2. B. Ameduri; B. Boutevin; G. Kostov, Prog. Polym. Sci. 2001, 26, 105-187.

3. B. Ameduri; B. Boutevin, Well Architectured Fluoropolymers: Synthesis, Properties and Applications; Elsevier: Amsterdam, 2004.

4. N. M. L. Hansen; K. Jankova; S. Hvilsted, Eur. Polym. J. 2007, 43, 255-293.

5. B. Ameduri, Macromolecules 2010, 43, 10163-10184.

6. H. Kawai, Jpn. J. Appl. Phys. 1969, 8, 975-976.

7. A. J. Lovinger, Science 1983, 220, 1115-1121.

8. R. G. Kepler; R. A. Anderson, Adv. Phys. 1992, 41, 1-57.

9. S. Horiuchi; Y. Tokura, Nat. Mater. 2008, 7, 357-366.

10.L. Zhu; Q. Wang, Macromolecules 2012, 45, 2937-2954.

General introduction

11.B. Ameduri, Chem. Rev. 2009, 109, 6632-6686.

12.J. Guiot; B. Ameduri; B. Boutevin, Macromolecules 2002, 35, 8694-8707.

13.K. Li; S. W. Liang; Y. Y. Lu; Q. Wang, Macromolecules 2007, 40, 4121-4123.

14.R. Timmerman, J. Appl. Polym. Sci. 1962, 6, 456-460.

15.T. S. Ahmed; J. M. DeSimone; G. W. Roberts, Chem. Eng. Sci. 2004, 59, 5139-5144.

16.L. Du; J. Y. Kelly; G. W. Roberts; J. M. DeSimone, J. Supercrit. Fluids 2009, 47, 447-457.

17.R. C. Ferguson; E. G. Brame, J. Phys. Chem. 1979, 83, 1397-1401.

18.P. Wormald; B. Arneduri; R. K. Harris; P. Hazendonk, Polymer 2008, 49, 3629-3638.

19.A. K. Nandi; L. Mandelkern, J. Polym. Sci. Pt. B-Polym. Phys. 1991, 29, 1287-1297.

20.C. Marega; A. Marigo, Eur. Polym. J. 2003, 39, 1713-1720.

21.B. Ameduri; C. Ladaviere; F. Delolme; B. Boutevin, Macromolecules 2004, 37, 7602-7609.

22.M. Tatemoto, Int. Polym. Sci. Technol. 1985, 12, 85-98.

23.G. David; C. Boyer; J. Tonnar; B. Ameduri; P. Lacroix-Desmazes; B. Boutevin, Chem. Rev.

2006, 106, 3936-3962.

24.C. Boyer; D. Valade; L. Sauguet; B. Ameduri; B. Boutevin, Macromolecules 2005, 38, 10353-10362.

25.C. Boyer; D. Valade; P. Lacroix-Desmazes; B. Ameduri; B. Boutevin, J. Polym. Sci. Pol.

Chem. 2006, 44, 5763-5777.

26.A. D. Asandei; O. I. Adebolu; C. P. Simpson, J. Am. Chem. Soc. 2012, 134, 6080-6083.

27.A. D. Asandei; O. I. Adebolu; C. P. Simpson; J.-S. Kim, Angew. Chem.-Int. Edit. 2013, 52, 10027-10030.

28.Z. M. Wang; Z. C. Zhang; T. C. M. Chung, Macromolecules 2006, 39, 4268-4271.

29.Z. Zhang; T. C. M. Chung, Macromolecules 2007, 40, 9391-9397.

30.S. Perrier; P. Takolpuckdee, J. Polym. Sci. Pol. Chem. 2005, 43, 5347-5393.

31.E. Girard; J.-D. Marty; B. Ameduri; M. Destarac, ACS Macro Lett. 2012, 1, 270-274.

32.Y. Patil; B. Ameduri, Polym. Chem. 2013, 4, 2783-2799.

33.V. Keppens, Nat. Mater. 2013, 12, 952-953.

34.M. Li; H. J. Wondergem; M.-J. Spijkman; K. Asadi; I. Katsouras; P. W. M. Blom; D. M. de Leeuw, Nat. Mater. 2013, 12, 433-438.

35.V. Sencadas; R. Gregorio; S. Lanceros-Mendez, J. Non-Cryst. Solids 2006, 352, 2226-2229.

36.S. J. Kang; Y. J. Park; J. Sung; P. S. Jo; C. Park; K. J. Kim; B. O. Cho, Appl. Phys. Lett. 2008, 92, 012921.

37.D. Shah; P. Maiti; E. Gunn; D. F. Schmidt; D. D. Jiang; C. A. Batt; E. R. Giannelis, Adv.

Mater. 2004, 16, 1173-1177.

Chapter 1

38.D. R. Dillon; K. K. Tenneti; C. Y. Li; F. K. Ko; I. Sics; B. S. Hsiao, Polymer 2006, 47, 1678-1688.

39.V. V. Kochervinskii, Polym. Sci. Ser. C 2008, 50, 93-121.

40.S. B. Lang; S. Muensit, Appl. Phys. A-Mater. Sci. Process. 2006, 85, 125-134.

41.L. Leibler, Macromolecules 1980, 13, 1602-1617.

42.F. S. Bates; G. H. Fredrickson, Annu. Rev. Phys. Chem. 1990, 41, 525-557.

43.A. K. Khandpur; S. Forster; F. S. Bates; I. W. Hamley; A. J. Ryan; W. Bras; K. Almdal; K.

Mortensen, Macromolecules 1995, 28, 8796-8806.

44.I. W. Hamley, The Physics of Block Copolymers; Oxford University Press: Oxford, 1998.

45.T. P. Lodge, Macromol. Chem. Phys. 2003, 204, 265-273.

46.Y. Mai; A. Eisenberg, Chem. Soc. Rev. 2012, 41, 5969-5985.

47.I. Botiz; S. B. Darling, Mater. Today 2010, 13, 42-51.

48.J. S. Wang; K. Matyjaszewski, J. Am. Chem. Soc. 1995, 117, 5614-5615.

49.M. Kato; M. Kamigaito; M. Sawamoto; T. Higashimura, Macromolecules 1995, 28, 1721-1723.

50.K. Matyjaszewski; J. H. Xia, Chem. Rev. 2001, 101, 2921-2990.

51.K. Matyjaszewski, Isr. J. Chem. 2012, 52, 206-220.

52.J. Chiefari; Y. K. Chong; F. Ercole; J. Krstina; J. Jeffery; T. P. T. Le; R. T. A. Mayadunne; G.

F. Meijs; C. L. Moad; G. Moad; E. Rizzardo; S. H. Thang, Macromolecules 1998, 31, 5559-5562.

53.G. Moad; E. Rizzardo; S. H. Thang, Aust. J. Chem. 2005, 58, 379-410.

54.D. J. Keddie, Chem. Soc. Rev. 2014, 43, 496-505.

55.V. V. Rostovtsev; L. G. Green; V. V. Fokin; K. B. Sharpless, Angew. Chem.-Int. Edit. 2002, 41, 2596-2599.

56.C. W. Tornoe; C. Christensen; M. Meldal, J. Org. Chem. 2002, 67, 3057-3064.

57.M. Meldal, Macromol. Rapid Commun. 2008, 29, 1016-1051.

58.P. L. Golas; K. Matyjaszewski, Chem. Soc. Rev. 2010, 39, 1338-1354.

59.U. Mansfeld; C. Pietsch; R. Hoogenboom; C. R. Becer; U. S. Schubert, Polym. Chem.

2010, 1, 1560-1598.

60.A. Soules; B. Ameduri; B. Boutevin; G. Calleja, Macromolecules 2010, 43, 4489-4499.

61.O. W. Webster, Science 1991, 251, 887-893.

62.G. Moggi; S. Modena; G. Marchionni, J. Fluor. Chem. 1990, 49, 141-146.

63.M. P. Gelin; B. Ameduri, J. Polym. Sci. Pol. Chem. 2003, 41, 160-171.

64.Y. S. Yang; Z. Q. Shi; S. Holdcroft, Eur. Polym. J. 2004, 40, 531-541.

65.Y. S. Yang; Z. Q. Shi; S. Holdcroft, Macromolecules 2004, 37, 1678-1681.

66.S. Modena; M. Pianca; M. Tato; G. Moggi; S. Russo, J. Fluor. Chem. 1989, 43, 15-25.

67.Z. B. Zhang; S. K. Ying; Z. Q. Shi, Polymer 1999, 40, 1341-1345.

General introduction

68.S. M. Jol; W. S. Lee; B. S. Ahn; K. Y. Park; K. A. Kim; I. S. Rhee Paeng, Polym. Bull. 2000, 44, 1-8.

69.M. Destarac; K. Matyjaszewski; E. Silverman; B. Ameduri; B. Boutevin, Macromolecules 2000, 33, 4613-4615.

70.M. Duc; B. Ameduri; G. David; B. Boutevin, J. Fluor. Chem. 2007, 128, 144-149.

71.Z. Q. Shi; S. Holdcroft, Macromolecules 2004, 37, 2084-2089.

72.Z. Q. Shi; S. Holdcroft, Macromolecules 2005, 38, 4193-4201.

73.K. Xu; K. Li; P. Khanchaitit; Q. Wang, Chem. Mat. 2007, 19, 5937-5945.

74.C. Chanthad; K. A. Masser; K. Xu; J. Runt; Q. Wang, J. Mater. Chem. 2012, 22, 341-344.

75.G. Kostov; F. Boschet; J. Buller; L. Badache; S. Brandsadter; B. Ameduri, Macromolecules 2011, 44, 1841-1855.

76.G. Kostov; F. Boschet; B. Ameduri, J. Fluor. Chem. 2009, 130, 1192-1199.

77.D. Valade; C. Boyer; B. Ameduri; B. Boutevin, Macromolecules 2006, 39, 8639-8651.

78.A. Meskini; M. Raihane; I. Stevenson-Royaud; G. Boiteux; G. Seytre; B. Ameduri, J. Non-Cryst. Solids 2010, 356, 688-694.

79.G. Laruelle; E. Nicol; B. Ameduri; J. F. Tassin; N. Ajellal, J. Polym. Sci. Pol. Chem. 2011, 49, 3960-3969.

80.R. Vukicevic; U. Schwadtke; S. Schmucker; P. Schafer; D. Kuckling; S. Beuermann, Polym.

Chem. 2012, 3, 409-414.

81.R. Vukicevic; P. Hierzenberger; S. Hild; S. Beuermann, J. Polym. Sci. Pol. Chem. 2010, 48, 4847-4854.

82.L. Rubatat; Z. Q. Shi; O. Diat; S. Holdcroft; B. J. Frisken, Macromolecules 2006, 39, 720-730.

83.L. Ying; W. H. Yu; E. T. Kang; K. G. Neoh, Langmuir 2004, 20, 6032-6040.

84.L. Sauguet; C. Boyer; B. Ameduri; B. Boutevin, Macromolecules 2006, 39, 9087-9101.

85.B. Liu; C. Chen; T. Li; J. Crittenden; Y. Chen, J. Mem. Sci. 2013, 445, 66-75.

86.J. F. Hester; P. Banerjee; Y. Y. Won; A. Akthakul; M. H. Acar; A. M. Mayes, Macromolecules 2002, 35, 7652-7661.

87.R. Souzy; J. Guiot; B. Ameduri; B. Boutevin; O. Paleta, Macromolecules 2003, 36, 9390-9395.

88.R. Souzy; B. Boutevin; B. Ameduri, Macromolecules 2012, 45, 3145-3160.

89.S. W. Liang; J. Claude; K. Xu; Q. Wang, Macromolecules 2008, 41, 6265-6268.

90.N. P. Brandon; S. Skinner; B. C. H. Steele, Annu. Rev. Mater. Res. 2003, 33, 183-213.

91.S. Holmberg; P. Holmlund; R. Nicolas; C. E. Wilen; T. Kallio; G. Sundholm; F. Sundholm, Macromolecules 2004, 37, 9909-9915.

92.S. Holmberg; P. Holmlund; C. E. Wilen; T. Kallio; G. Sundholm; F. Sundholm, J. Polym.

Sci. Pol. Chem. 2002, 40, 591-600.

Chapter 1

93.E. M. W. Tsang; Z. Zhang; Z. Shi; T. Soboleva; S. Holdcroft, J. Am. Chem. Soc. 2007, 129, 15106-15107.

94.M. P. Krafft; J. G. Riess, Chem. Rev. 2009, 109, 1714-1792.

95.W. Eerenstein; N. D. Mathur; J. F. Scott, Nature 2006, 442, 759-765.

96.J. Ma; J. M. Hu; Z. Li; C. W. Nan, Adv. Mater. 2011, 23, 1062-1087.

97.N. A. Hill, J. Phys. Chem. B 2000, 104, 6694-6709.

98.M. Fiebig, J. Phys. D-Appl. Phys. 2005, 38, R123-R152.

GERELATEERDE DOCUMENTEN