• No results found

As already mentioned a number of 5-HT autoreceptors regulate 5-HT release by post- or presynaptic mechanisms. However there are a number of other neurotransmitters involved in the regulation of 5-HT. The serotonergic system densely innervated large portions of the brains and is co-localized with many other neurotransmitter systems. It has been shown that there are both alpha-1 and alpha-2 adrenergic heteroreceptors acting on serotonergic neurons. The alpha-1 heteroreceptors are located on the cell bodies of serotonergic nuclei, and it has been shown that noradrenaline activates these alpha-1 adrenoreceptors resulting in an inhibition of the firing of 5-HT neurons. This has been shown in many brain regions (Hjorth et al, 1995). The alpha-2 heteroreceptor is restricted to terminal areas where they directly regulate serotonin release (Tao & Hjorth, 1992; de Boer et al, 1996). Inhibitory alpha-2 adrenoceptors on the NE neuroterminals form part of a feedback control mechanism. Mirtazapine, an antagonist at alpha-2 adrenoceptors, does not enhance 5-HT neurotransmission directly but disinhibits the NE activation of 5-HT neurons and thereby increases 5-HT neurotransmission by a mechanism that does not require a time-dependent desensitization of receptors.

GABA receptors are also known to regulate the release of serotonin.

GABAA receptors are present in the MRN and DRN nuclei and decrease the firing activity of the serotonergic neurons located there. GABAB receptors are located on the DRN and also in terminal areas such as the nucleus accumbens. Activation of these GABAB receptors results in the decrease in 5-HT release in terminal areas and decreases the overall 5-HT neuronal firing in the DRN (Tao & Auerbach, 2000).

Dopaminergic D2 receptors have been found to be involved in serotonin release. This was illustrated using a selective D2 agonist (LY 171,555) and

observing the increased concentration of serotonin. Upon administration of D2

antagonists (raclopride) the increase in serotonin levels was annulled (Ferre et al, 1993; 1994).

It has been reported that presynaptic glutamatergic receptors (AMPA/

kainate) are located on serotonergic neurons (Ghersi et al, 2003; Pittaluga et al, 1997), and can mediate the firing and release of the serotonergic neuron.

Similarly, histamine receptors have been located on serotonergic neurons and have been shown to be involved in the regulation of firing and release of 5-HT (Schwartz et al, 1991; Barbara et al, 2002).

As investigations into the interactions of the various neurotransmitter systems continue, there will no doubt be further evidence for alternate neurotransmitter receptors being localized on serotonergic neurons, which can directly mediate the firing of the 5-HT neuron, or neurotransmitter release from the serotonergic terminals. The involvement of many of these receptors in the modulation of serotonin and their role in depression as well as its treatment are further discussed in chapter 3.

References

Aapro M. S. (1991) 5-HT3 receptor antagonists. An overview of their present status and future potential in cancer therapy-induced emesis. Drugs 42, 551-568.

Abramowski D. and Staufenbiel M. (1995) Identification of the 5-hydroxytryptamine2C receptor as a 60-kDa N-glycosylated protein in choroid plexus and hippocampus. J Neurochem 65, electron-microscopic autoradiography. J Pharmacol Exp Ther 156, 23-30.

Amlaiky N., Ramboz S., Boschert U., Plassat J. L. and Hen R. (1992) Isolation of a mouse

"5HT1E-like" serotonin receptor expressed predominantly in hippocampus. J Biol Chem 267, 19761-19764.

Azmitia E. C. and Segal M. (1978) An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J Comp Neurol 179, 641-667.

Baker K. G., Halliday G. M. and Tork I. (1990) Cytoarchitecture of the human dorsal raphe nucleus. J Comp Neurol 301, 147-161.

Barbara A., Aceves J. and Arias-Montano J. A. (2002) Histamine H1 receptors in rat dorsal raphe nucleus: pharmacological characterisation and linking to increased neuronal activity. Brain Res 954, 247-255.

Barnes N. M. and Sharp T. (1999) A review of central 5-HT receptors and their function.

Neuropharmacology 38, 1083-1152.

Beck S. G., Pan Y. Z., Akanwa A. C. and Kirby L. G. (2004) Median and dorsal raphe neurons are not electrophysiologically identical. J Neurophysiol 91, 994-1005.

Berg K. A., Maayani S. and Clarke W. P. (1996) 5-hydroxytryptamine2C receptor activation inhibits 5-hydroxytryptamine1B-like receptor function via arachidonic acid metabolism. Mol Pharmacol 50, 1017-1023.

Berg K. A., Maayani S., Goldfarb J., Scaramellini C., Leff P. and Clarke W. P. (1998) Effector pathway-dependent relative efficacy at serotonin type 2A and 2C receptors: evidence for agonist-directed trafficking of receptor stimulus. Mol Pharmacol 54, 94-104.

Bonhaus D. W., Weinhardt K. K., Taylor M., DeSouza A., McNeeley P. M., Szczepanski K., Fontana D. J., Trinh J., Rocha C. L., Dawson M. W., Flippin L. A. and Eglen R. M. (1997) RS-102221: a novel high affinity and selective, 5-HT2C receptor antagonist. Neuropharmacology 36, 621-629.

Bos M., Jenck F., Martin J. R., Moreau J. L., Sleight A. J., Wichmann J. and Widmer U. (1997) Novel agonists of 5HT2C receptors. Synthesis and biological evaluation of substituted 2-(indol-1-yl)-1-methylethylamines and 2-(indeno[1,2-b]pyrrol-1-yl)-1-methylethylamines. Improved therapeutics for obsessive compulsive disorder. J Med Chem 40, 2762-2769.

Boschert U., Amara D. A., Segu L. and Hen R. (1994) The mouse 5-hydroxytryptamine1B receptor is localized predominantly on axon terminals. Neuroscience 58, 167-182.

Branchek T. A. and Blackburn T. P. (2000) 5-ht6 receptors as emerging targets for drug discovery.

Annu Rev Pharmacol Toxicol 40, 319-334.

Briddon S. J., Leslie R. A. and Elliott J. M. (1998) Comparative desensitization of the human 5-HT2A and 5-HT2C receptors expressed in the human neuroblastoma cell line SH-SY5Y. Br J Pharmacol 125, 727-734.

Brown P. and Molliver M. E. (2000) Dual serotonin (5-HT) projections to the nucleus accumbens core and shell: relation of the 5-HT transporter to amphetamine-induced neurotoxicity. J Neurosci 20, 1952-1963.

Bruinvels A. T., Landwehrmeyer B., Gustafson E. L., Durkin M. M., Mengod G., Branchek T. A., Hoyer D. and Palacios J. M. (1994) Localization of 5-HT1B, 5-HT1D alpha, 5-HT1E and 5-HT1F receptor messenger RNA in rodent and primate brain. Neuropharmacology 33, 367-386.

Buhlen M., Fink K., Boing C. and Gothert M. (1996) Evidence for presynaptic location of inhibitory 5-HT1D beta-like autoreceptors in the guinea-pig brain cortex. Naunyn Schmiedebergs Arch Pharmacol 353, 281-289.

Burns C. M., Chu H., Rueter S. M., Hutchinson L. K., Canton H., Sanders-Bush E. and Emeson R.

B. (1997) Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387, 303-308.

Cadogan A. K., Kendall D. A. and Marsden C. A. (1994) Serotonin 5-HT1A receptor activation increases cyclic AMP formation in the rat hippocampus in vivo. J Neurochem 62, 1816-1821.

Calas A., Bosler O. and Assenmacher I. (1975) [Cytophysiologic approach of 2 neuroendocrine interfaces of the hypothalamus: the median eminence and the vascular organ of the terminal lamina. Radioautographic study in ducks]. Arch Anat Histol Embryol 58, 107-120.

Canton H., Emeson R. B., Barker E. L., Backstrom J. R., Lu J. T., Chang M. S. and Sanders-Bush E. (1996) Identification, molecular cloning, and distribution of a short variant of the 5-hydroxytryptamine2C receptor produced by alternative splicing. Mol Pharmacol 50, 799-807.

Carson M. J., Thomas E. A., Danielson P. E. and Sutcliffe J. G. (1996) The 5HT5A serotonin receptor is expressed predominantly by astrocytes in which it inhibits cAMP accumulation: a mechanism for neuronal suppression of reactive astrocytes. Glia 17, 317-326.

Chalmers D. T. and Watson S. J. (1991) Comparative anatomical distribution of 5-HT1A receptor mRNA and 5-HT1A binding in rat brain-a combined in situ hybridisation/in vitro receptor autoradiographic study. Brain Res 561, 51-60.

Chazal G. and Ralston H. J., 3rd (1987) Serotonin-containing structures in the nucleus raphe dorsalis of the cat: an ultrastructural analysis of dendrites, presynaptic dendrites, and axon terminals. J Comp Neurol 259, 317-329.

Claeysen S., Sebben M., Becamel C., Bockaert J. and Dumuis A. (1999) Novel brain-specific 5-HT4 receptor splice variants show marked constitutive activity: role of the C-terminal intracellular domain. Mol Pharmacol 55, 910-920.

Crabbe J. C., Phillips T. J., Feller D. J., Hen R., Wenger C. D., Lessov C. N. and Schafer G. L.

(1996) Elevated alcohol consumption in null mutant mice lacking 5-HT1B serotonin receptors.

Nat Genet 14, 98-101.

Crespi F., Garratt J. C., Sleight A. J. and Marsden C. A. (1990) In vivo evidence that 5-hydroxytryptamine (5-HT) neuronal firing and release are not necessarily correlated with 5-HT metabolism. Neuroscience 35, 139-144.

Dahlstrom A. and Fuxe K. (1964) Localization of monoamines in the lower brain stem.

Experientia 20, 398-399.

de Boer T. H., Nefkens F., van Helvoirt A. and van Delft A. M. (1996) Differences in modulation of noradrenergic and serotonergic transmission by the alpha-2 adrenoceptor antagonists, mirtazapine, mianserin and idazoxan. J Pharmacol Exp Ther 277, 852-860.

De Vivo M. and Maayani S. (1990) Stimulation and inhibition of adenylyl cyclase by distinct 5-hydroxytryptamine receptors. Biochem Pharmacol 40, 1551-1558.

Dekeyne A., Denorme B., Monneyron S. and Millan M. J. (2000) Citalopram reduces social interaction in rats by activation of serotonin (5-HT)(2C) receptors. Neuropharmacology 39, 1114-1117.

Descarries L., Beaudet A. and Watkins K. C. (1975) Serotonin nerve terminals in adult rat neocortex. Brain Res 100, 563-588.

Descarries L., Watkins K. C., Garcia S. and Beaudet A. (1982) The serotonin neurons in nucleus raphe dorsalis of adult rat: a light and electron microscope radioautographic study. J Comp Neurol 207, 239-254.

Dickenson J. M. and Hill S. J. (1998) Human 5-HT1B receptor stimulated inositol phospholipid hydrolysis in CHO cells: synergy with Gq-coupled receptors. Eur J Pharmacol 348, 279-285.

Dillon K. A., Gross-Isseroff R., Israeli M. and Biegon A. (1991) Autoradiographic analysis of serotonin 5-HT1A receptor binding in the human brain postmortem: effects of age and alcohol.

Brain Res 554, 56-64.

DiMagno L., Dascal N., Davidson N., Lester H. A. and Schreibmayer W. (1996) Serotonin and protein kinase C modulation of a rat brain inwardly rectifying K+ channel expressed in xenopus oocytes. Pflugers Arch 431, 335-340.

Eglen R. M., Wong E. H., Dumuis A. and Bockaert J. (1995) Central 5-HT4 receptors. Trends Pharmacol Sci 16, 391-398.

el Mestikawy S., Riad M., Laporte A. M., Verge D., Daval G., Gozlan H. and Hamon M. (1990) Production of specific anti-rat 5-HT1A receptor antibodies in rabbits injected with a synthetic peptide. Neurosci Lett 118, 189-192.

Engel G., Gothert M., Hoyer D., Schlicker E. and Hillenbrand K. (1986) Identity of inhibitory presynaptic 5-hydroxytryptamine (5-HT) autoreceptors in the rat brain cortex with 5-HT1B binding sites. Naunyn Schmiedebergs Arch Pharmacol 332, 1-7.

Fargin A., Raymond J. R., Lohse M. J., Kobilka B. K., Caron M. G. and Lefkowitz R. J. (1988) The genomic clone G-21 which resembles a beta-adrenergic receptor sequence encodes the 5-HT1A receptor. Nature 335, 358-360.

Fargin A., Yamamoto K., Cotecchia S., Goldsmith P. K., Spiegel A. M., Lapetina E. G., Caron M.

G. and Lefkowitz R. J. (1991) Dual coupling of the cloned 5-HT1A receptor to both adenylyl cyclase and phospholipase C is mediated via the same Gi protein. Cell Signal 3, 547-557.

Ferre S. and Artigas F. (1993) Dopamine D2 receptor-mediated regulation of serotonin extracellular concentration in the dorsal raphe nucleus of freely moving rats. J Neurochem 61, 772-775.

Ferre S., Cortes R. and Artigas F. (1994) Dopaminergic regulation of the serotonergic raphe-striatal pathway: microdialysis studies in freely moving rats. J Neurosci 14, 4839-4846.

Fiorella D., Rabin R. A. and Winter J. C. (1995) The role of the 5-HT2A and 5-HT2C receptors in the stimulus effects of hallucinogenic drugs. I: Antagonist correlation analysis.

Psychopharmacology (Berl) 121, 347-356.

Fitzgerald L. W., Iyer G., Conklin D. S., Krause C. M., Marshall A., Patterson J. P., Tran D. P., Jonak G. J. and Hartig P. R. (1999) Messenger RNA editing of the human serotonin 5-HT2C receptor. Neuropsychopharmacology 21, 82S-90S.

Florian J. A. and Watts S. W. (1998) Integration of mitogen-activated protein kinase kinase activation in vascular 5-hydroxytryptamine2A receptor signal transduction. J Pharmacol Exp Ther 284, 346-355.

Fone K. C., Austin R. H., Topham I. A., Kennett G. A. and Punhani T. (1998) Effect of chronic m-CPP on locomotion, hypophagia, plasma corticosterone and 5-HT2C receptor levels in the rat. Br J Pharmacol 123, 1707-1715.

Gaddum J. H. and Picarelli Z. P. (1957) Two kinds of tryptamine receptor. Br J Pharmacol Chemother 12, 323-328.

Gerard C., el Mestikawy S., Lebrand C., Adrien J., Ruat M., Traiffort E., Hamon M. and Martres M. P. (1996) Quantitative RT-PCR distribution of serotonin 5-HT6 receptor mRNA in the central nervous system of control or 5,7-dihydroxytryptamine-treated rats. Synapse 23, 164-173.

Gerhardt C. C. and van Heerikhuizen H. (1997) Functional characteristics of heterologously expressed 5-HT receptors. Eur J Pharmacol 334, 1-23.

Ghersi C., Bonfanti A., Manzari B., Feligioni M., Raiteri M. and Pittaluga A. (2003) Pharmacological heterogeneity of release-regulating presynaptic AMPA/kainate receptors in the rat brain: study with receptor antagonists. Neurochem Int 42, 283-292.

Gothert M. (1990) Presynaptic serotonin receptors in the central nervous system. Ann N Y Acad Sci 604, 102-112.

Grimaldi B., Bonnin A., Fillion M. P., Ruat M., Traiffort E. and Fillion G. (1998) Characterization of 5-ht6 receptor and expression of 5-ht6 mRNA in the rat brain during ontogenetic development.

Naunyn Schmiedebergs Arch Pharmacol 357, 393-400.

Gyermek L. (1995) 5-HT3 receptors: pharmacologic and therapeutic aspects. J Clin Pharmacol 35, 845-855.

Hamblin M. W. and Metcalf M. A. (1991) Primary structure and functional characterization of a human 5-HT1D-type serotonin receptor. Mol Pharmacol 40, 143-148.

Hamon M., Lanfumey L., el Mestikawy S., Boni C., Miquel M. C., Bolanos F., Schechter L. and Gozlan H. (1990) The main features of central 5-HT1 receptors. Neuropsychopharmacology 3, 349-360.

Heidbreder C. A. and Groenewegen H. J. (2003) The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 27, 555-579.

Heimer L. (2003) A new anatomical framework for neuropsychiatric disorders and drug abuse. Am J Psychiatry 160, 1726-1739.

Hensler J. G. (2006) Serotonergic modulation of the limbic system. Neurosci Biobehav Rev 30, 203-214.

Hjorth S. and Sharp T. (1991) Effect of the 5-HT1A receptor agonist 8-OH-DPAT on the release of 5-HT in dorsal and median raphe-innervated rat brain regions as measured by in vivo microdialysis. Life Sci 48, 1779-1786.

Hoyer D. and Middlemiss D. N. (1989) Species differences in the pharmacology of terminal 5-HT autoreceptors in mammalian brain. Trends Pharmacol Sci 10, 130-132.

Hoyer D., Hannon J. P. and Martin G. R. (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71, 533-554.

Hoyer D., Clarke D. E., Fozard J. R., Hartig P. R., Martin G. R., Mylecharane E. J., Saxena P. R.

and Humphrey P. P. (1994) International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol Rev 46, 157-203.

Huidobro-Toro J. P., Valenzuela C. F. and Harris R. A. (1996) Modulation of GABAA receptor function by G protein-coupled 5-HT2C receptors. Neuropharmacology 35, 1355-1363.

Hung B. C., Loo D. D. and Wright E. M. (1993) Regulation of mouse choroid plexus apical Cl- and K+ channels by serotonin. Brain Res 617, 285-295.

Jacobs B. L. and Azmitia E. C. (1992) Structure and function of the brain serotonin system.

Physiol Rev 72, 165-229.

Jacobs B. L. and Fornal C. A. (1999) Activity of serotonergic neurons in behaving animals.

Neuropsychopharmacology 21, 9S-15S.

Jalonen T. O., Margraf R. R., Wielt D. B., Charniga C. J., Linne M. L. and Kimelberg H. K.

(1997) Serotonin induces inward potassium and calcium currents in rat cortical astrocytes. Brain Res 758, 69-82.

Johnson M. P., Siegel B. W. and Carr A. A. (1996) [3H]MDL 100,907: a novel selective 5-HT2A receptor ligand. Naunyn Schmiedebergs Arch Pharmacol 354, 205-209.

Jolas T., Schreiber R., Laporte A. M., Chastanet M., De Vry J., Glaser T., Adrien J. and Hamon M. (1995) Are postsynaptic 5-HT1A receptors involved in the anxiolytic effects of 5-HT1A receptor agonists and in their inhibitory effects on the firing of serotonergic neurons in the rat? J Pharmacol Exp Ther 272, 920-929.

Kandel E. R. and Squire L. R. (2000) Neuroscience: breaking down scientific barriers to the study of brain and mind. Science 290, 1113-1120.

Kapadia S. E., de Lanerolle N. C. and LaMotte C. C. (1985) Immunocytochemical and electron microscopic study of serotonin neuronal organization in the dorsal raphe nucleus of the monkey.

Neuroscience 15, 729-746.

Kennett G. A., Bright F., Trail B., Baxter G. S. and Blackburn T. P. (1996) Effects of the 5-HT2B receptor agonist, BW 723C86, on three rat models of anxiety. Br J Pharmacol 117, 1443-1448.

Kia H. K., Miquel M. C., Brisorgueil M. J., Daval G., Riad M., El Mestikawy S., Hamon M. and Verge D. (1996) Immunocytochemical localization of serotonin1A receptors in the rat central nervous system. J Comp Neurol 365, 289-305.

Kirby L. G., Pernar L., Valentino R. J. and Beck S. G. (2003) Distinguishing characteristics of serotonin and non-serotonin-containing cells in the dorsal raphe nucleus: electrophysiological and immunohistochemical studies. Neuroscience 116, 669-683.

Kohler C. and Steinbusch H. (1982) Identification of serotonin and non-serotonin-containing neurons of the mid-brain raphe projecting to the entorhinal area and the hippocampal formation. A combined immunohistochemical and fluorescent retrograde tracing study in the rat brain.

Neuroscience 7, 951-975.

Le Grand B., Panissie A., Pauwels P. J. and John G. W. (1998) Activation of recombinant h 5-HT1B and h 5-HT1D receptors stably expressed in C6 glioma cells produces increases in Ca2+-dependent K+ current. Naunyn Schmiedebergs Arch Pharmacol 358, 608-615.

Leonhardt S., Herrick-Davis K. and Titeler M. (1989) Detection of a novel serotonin receptor subtype (5-HT1E) in human brain: interaction with a GTP-binding protein. J Neurochem 53, 465-471.

Lovenberg T. W., Baron B. M., de Lecea L., Miller J. D., Prosser R. A., Rea M. A., Foye P. E., Racke M., Slone A. L., Siegel B. W. and et al, (1993) A novel adenylyl cyclase-activating serotonin receptor (5-HT7) implicated in the regulation of mammalian circadian rhythms. Neuron 11, 449-458.

Lucas J. J. and Hen R. (1995) New players in the 5-HT receptor field: genes and knockouts.

Trends Pharmacol Sci 16, 246-252.

Marcinkiewicz M., Verge D., Gozlan H., Pichat L. and Hamon M. (1984) Autoradiographic evidence for the heterogeneity of 5-HT1 sites in the rat brain. Brain Res 291, 159-163.

Matsubara S., Arora R. C. and Meltzer H. Y. (1991) Serotonergic measures in suicide brain: 5-HT1A binding sites in frontal cortex of suicide victims. J Neural Transm Gen Sect 85, 181-194.

Matthes H., Boschert U., Amlaiky N., Grailhe R., Plassat J. L., Muscatelli F., Mattei M. G. and Hen R. (1993) Mouse 5-hydroxytryptamine5A and 5-hydroxytryptamine5B receptors define a new family of serotonin receptors: cloning, functional expression, and chromosomal localization. Mol Pharmacol 43, 313-319.

Maura G. and Raiteri M. (1986) Cholinergic terminals in rat hippocampus possess 5-HT1B receptors mediating inhibition of acetylcholine release. Eur J Pharmacol 129, 333-337.

Maura G., Roccatagliata E. and Raiteri M. (1986) Serotonin autoreceptor in rat hippocampus:

pharmacological characterization as a subtype of the 5-HT1 receptor. Naunyn Schmiedebergs Arch Pharmacol 334, 323-326.

McGinty D. J. and Harper R. M. (1976) Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res 101, 569-575.

McQuade R. and Sharp T. (1997) Functional mapping of dorsal and median raphe 5-hydroxytryptamine pathways in forebrain of the rat using microdialysis. J Neurochem 69, 791-796.

Mengod G., Vilaro M. T., Raurich A., Lopez-Gimenez J. F., Cortes R. and Palacios J. M. (1996) 5-HT receptors in mammalian brain: receptor autoradiography and in situ hybridization studies of new ligands and newly identified receptors. Histochem J 28, 747-758.

Millan M. J. (2005) Serotonin 5-HT2C receptors as a target for the treatment of depressive and anxious states: focus on novel therapeutic strategies. Therapie 60, 441-460.

Millan M. J., Girardon S. and Dekeyne A. (1999) 5-HT2C receptors are involved in the discriminative stimulus effects of citalopram in rats. Psychopharmacology (Berl) 142, 432-434.

Miquel M. C., Emerit M. B., Gozlan H. and Hamon M. (1991) Involvement of tryptophan residue(s) in the specific binding of agonists/antagonists to 5-HT3 receptors in NG108-15 clonal cells. Biochem Pharmacol 42, 1453-1461.

Monti J. M., Monti D., Jantos H. and Ponzoni A. (1995) Effects of selective activation of the 5-HT1B receptor with CP-94,253 on sleep and wakefulness in the rat. Neuropharmacology 34, 1647-1651.

Morales M. and Wang S. D. (2002) Differential composition of 5-hydroxytryptamine3 receptors synthesized in the rat CNS and peripheral nervous system. J Neurosci 22, 6732-6741.

Mosko S. S., Haubrich D. and Jacobs B. L. (1977) Serotonergic afferents to the dorsal raphe nucleus: evdience from HRP and synaptosomal uptake studies. Brain Res 119, 269-290.

Nelson D. L. (1991) Structure-activity relationships at 5-HT1A receptors: binding profiles and intrinsic activity. Pharmacol Biochem Behav 40, 1041-1051.

Nelson D. L., Pedigo N. W. and Yamamura H. I. (1981) Multiple 3H-5-hydroxytryptamine binding sites in rat brain. J Physiol (Paris) 77, 369-372.

Niswender C. M., Sanders-Bush E. and Emeson R. B. (1998) Identification and characterization of RNA editing events within the 5-HT2C receptor. Ann N Y Acad Sci 861, 38-48.

Olivier B., Molewijk H. E., van der Heyden J. A., van Oorschot R., Ronken E., Mos J. and Miczek K. A. (1998) Ultrasonic vocalizations in rat pups: effects of serotonergic ligands. Neurosci Biobehav Rev 23, 215-227.

Olsen M. A., Nawoschik S. P., Schurman B. R., Schmitt H. L., Burno M., Smith D. L. and Schechter L. E. (1999) Identification of a human 5-HT6 receptor variant produced by alternative splicing. Brain Res Mol Brain Res 64, 255-263.

Pazos A. and Palacios J. M. (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors. Brain Res 346, 205-230.

Peroutka S. J. (1995) 5-HT receptors: past, present and future. Trends Neurosci 18, 68-69.

Peroutka S. J. and Snyder S. H. (1979) Multiple serotonin receptors: differential binding of [3H]5-hydroxytryptamine, [3H]lysergic acid diethylamide and [3H]spiroperidol. Mol Pharmacol 16, 687-699.

Pineyro G. and Blier P. (1999) Autoregulation of serotonin neurons: role in antidepressant drug action. Pharmacol Rev 51, 533-591.

Pittaluga A., Bonfanti A. and Raiteri M. (1997) Differential desensitization of ionotropic non-NMDA receptors having distinct neuronal location and function. Naunyn Schmiedebergs Arch Pharmacol 356, 29-38.

Poblete J. C. and Azmitia E. C. (1995) Activation of glycogen phosphorylase by serotonin and 3,4-methylenedioxymethamphetamine in astroglial-rich primary cultures: involvement of the 5-HT2A receptor. Brain Res 680, 9-15.

Pompeiano M., Palacios J. M. and Mengod G. (1992) Distribution and cellular localization of mRNA coding for 5-HT1A receptor in the rat brain: correlation with receptor binding. J Neurosci 12, 440-453.

Price R. D., Weiner D. M., Chang M. S. and Sanders-Bush E. (2001) RNA editing of the human serotonin 5-HT2C receptor alters receptor-mediated activation of G13 protein. J Biol Chem 276, 44663-44668.

Rapport M.M, Green A.A., and Page I.H. (1948) Serum vasoconstrictor (serotonin) IV. Isolation and characterization J Biol Chem 176, 1243-1251.

Rault S., Lancelot J. C., Prunier H., Robba M., Renard P., Delagrange P., Pfeiffer B., Caignard D.

H., Guardiola-Lemaitre B. and Hamon M. (1996) Novel selective and partial agonists of 5-HT3 receptors. Part 1. Synthesis and biological evaluation of piperazinopyrrolothienopyrazines. J Med Chem 39, 2068-2080.

Rausch J. L., Stahl S. M. and Hauger R. L. (1990) Cortisol and growth hormone responses to the 5-HT1A agonist gepirone in depressed patients. Biol Psychiatry 28, 73-78.

Raymond J. R., Mukhin Y. V., Gelasco A., Turner J., Collinsworth G., Gettys T. W., Grewal J. S.

and Garnovskaya M. N. (2001) Multiplicity of mechanisms of serotonin receptor signal transduction. Pharmacol Ther 92, 179-212.

Rees S., den Daas I., Foord S., Goodson S., Bull D., Kilpatrick G. and Lee M. (1994) Cloning and characterisation of the human 5-HT5A serotonin receptor. FEBS Lett 355, 242-246.

Roth B. L. (1994) Multiple serotonin receptors: clinical and experimental aspects. Ann Clin Psychiatry 6, 67-78.

Sanden N., Thorlin T., Blomstrand F., Persson P. A. and Hansson E. (2000) 5-Hydroxytryptamine2B receptors stimulate Ca2+ increases in cultured astrocytes from three different brain regions. Neurochem Int 36, 427-434.

Sanders-Bush E. and Breeding M. (1988) Putative selective HT-2 antagonists block serotonin 5-HT-1c receptors in the choroid plexus. J Pharmacol Exp Ther 247, 169-173.

Saxena P. R. (1995) Serotonin receptors: subtypes, functional responses and therapeutic relevance.

Pharmacol Ther 66, 339-368.

Schreiber R., Brocco M. and Millan M. J. (1994) Blockade of the discriminative stimulus effects of DOI by MDL 100,907 and the 'atypical' antipsychotics, clozapine and risperidone. Eur J Pharmacol 264, 99-102.

Schwartz J. C., Arrang J. M., Garbarg M., Pollard H. and Ruat M. (1991) Histaminergic transmission in the mammalian brain. Physiol Rev 71, 1-51.

Serrats J., Mengod G. and Cortes R. (2005) Expression of serotonin 5-HT2C receptors in GABAergic cells of the anterior raphe nuclei. J Chem Neuroanat 29, 83-91.

Serrats J., Artigas F., Mengod G. and Cortes R. (2003) GABAB receptor mRNA in the raphe nuclei: co-expression with serotonin transporter and glutamic acid decarboxylase. J Neurochem 84, 743-752.

Sipes T. E. and Geyer M. A. (1996) Functional behavioral homology between rat 5-HT1B and guinea pig 5-HT1D receptors in the modulation of prepulse inhibition of startle.

Psychopharmacology (Berl) 125, 231-237.

Skingle M., Beattie D. T., Scopes D. I., Starkey S. J., Connor H. E., Feniuk W. and Tyers M. B.

(1996) GR127935: a potent and selective 5-HT1D receptor antagonist. Behav Brain Res 73, 157-161.

Starke K., Gothert M. and Kilbinger H. (1989) Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol Rev 69, 864-989.

Steinbusch H. W., Verhofstad A. A. and Joosten H. W. (1978) Localization of serotonin in the central nervous system by immunohistochemistry: description of a specific and sensitive technique and some applications. Neuroscience 3, 811-819.

Sternbach H. (1991) The serotonin syndrome. Am J Psychiatry 148, 705-713.

Stowe R. L. and Barnes N. M. (1998) Selective labelling of 5-HT7 receptor recognition sites in rat brain using [3H]5-carboxamidotryptamine. Neuropharmacology 37, 1611-1619.

Swanson L. W. and Petrovich G. D. (1998) What is the amygdala? Trends Neurosci 21, 323-331.

Tao R. and Hjorth S. (1992) Alpha 2-adrenoceptor modulation of rat ventral hippocampal 5-hydroxytryptamine release in vivo. Naunyn Schmiedebergs Arch Pharmacol 345, 137-143.

Tao R. and Hjorth S. (1992) Alpha 2-adrenoceptor modulation of rat ventral hippocampal 5-hydroxytryptamine release in vivo. Naunyn Schmiedebergs Arch Pharmacol 345, 137-143.