• No results found

5 Summary and conclusions

5.3 Limitations and future research

This thesis, like any other, has some limitations. First and foremost, a survey was conducted in this study and there are some constraints to survey studies. For example, the responder may misread the questions, or the respondent may not always be capable of answering them, because of a lack of experience with the content of the survey questions, such as questions about intelligent automation. The factor and Cronbach alpha analyses were used to overcome this constraint. In addition, the dataset’s size may be a constraint. A total of about 192 respondents completed the survey. However, as this thesis only focuses on respondents from Europe, ten observations were removed. As a result, there are 182 observations in the data set.

It is possible that with a larger dataset this research would result in different conclusions.

Furthermore, the survey has mostly been sent to respondents from the Netherlands, and some respondents come from elsewhere in Europe. This indicates that the research is a good representation of how it is in The Netherlands, however, there are too few European observations to say that the results apply to Europe. Furthermore, this research is focused on Europe, so it could lead to different results in other continents.

Despite the limitations of the research, it is important to emphasize that this is the first conducted research that looks at the association between digitalization in Finance, the investment in technical skills of employees, and the effectiveness of the Finance function.

Evidence was found for two of the three expectations, and some evidence was found for the third expectation through performing additional analysis. In addition, also other important findings emerged. According to the findings of this research, companies should use digital technologies in Finance as well as invest in the technical skills of employees as both do contribute to a more effective Finance function. The research suggests that companies can better use data analytics than automation tools to increase the effectiveness of the Finance function. However, when the company also invests in the employees’ technical skills, both digital technologies combined with the skills will increase the effectiveness. Furthermore, it can be concluded that small companies should invest more in digital technologies in Finance because as they do this it will lead to higher effectiveness. As research shows that the effectiveness of the Finance function in the public sector is lower, these companies should use digital technologies and invest in the employees' technical skills because this does increase the effectiveness of the Finance function. As a result, this research contributes to the literature and addresses contemporary issues. It is recommended that similar research should be conducted with a bigger dataset in the future. It is also advised to broaden the survey to more respondents

from Europe. At last, it is recommended to check the measured construct of the effectiveness of the Finance function as it could exclude components of financial tasks of some sectors.

References

Acemoglu, D., & Restrepo, P. (2020). Robots and Jobs: Evidence from US Labor Markets. Journal of Political Economy, 128(6), 2188–2244.

Brands, K., & Holtzblatt, M. (2015). Business analytics: transforming the role of management accountants. Management Accounting Quarterly, 16(3).

Byrne, S., & Pierce, B. (2007). Towards a More Comprehensive Understanding of the Roles of Management Accountants. European Accounting Review, 16(3), 469–498.

Carneiro, N., Figueira, G., & Costa, M. (2017). A data mining based system for credit-card fraud detection in e-tail. Decision Support Systems, 95, 91–101.

Chakravarty, A., Grewal, R., & Sambamurthy, V. (2013). Information Technology Competencies, Organizational Agility, and Firm Performance: Enabling and Facilitating Roles. Information Systems Research, 24(4), 976–997.

Chang, H., Ittner, C. D., & Paz, M. T. (2014). The Multiple Roles of the Finance Organization:

Determinants, Effectiveness, and the Moderating Influence of Information System Integration.

Journal of Management Accounting Research, 26(2), 1–32.

Cohen, W. M., & Levinthal, D. A. (1990). Absorptive capacity: a new perspective on learning and innovation. Administrative Science Quarterly, 35(1), 128–152.

Coombs, C., Hislop, D., Taneva, S. K., & Barnard, S. (2020). The strategic impacts of Intelligent Automation for knowledge and service work: An interdisciplinary review. Journal of Strategic Information Systems, 29, 1–30.

Culkin, R., & Das, S. R. (2017). Machine Learning in Finance: The Case of Deep Learning for Option Pricing. Journal of Investment Management, 15(4), 92–100.

de Waal, A., & Bilstra, E. (2016). Hoe bouw je een High Performance Financiële Functie?

Vakmedianet, Deventer.

de Waal, A., Bilstra, E., & de Roeck, P. (2019). Identifying the characteristics of a high-performance finance function. Journal of Advances in Management Research, 16(3), 352–377.

Diebold, F. X. (2012). A Personal Perspective on the Origin(s) and Development of “Big Data”: The Phenomenon, the Term, and the Discipline . 1–5.

Elbashir, M. Z., Collier, P. A., Sutton, S. G., Davern, M. J., & Leech, S. A. (2013). Enhancing the Business Value of Business Intelligence: The Role of Shared Knowledge and Assimilation.

Journal of Information Systems, 27(2), 87–105.

Eller, R., Alford, P., Kallmünzer, A., & Peters, M. (2020). Antecedents, consequences, and challenges of small and medium-sized enterprise digitalization. Journal of Business Research, 112, 119–127.

Ford, M. (2015). The rise of the robots: Technology and the threat of mass unemployment. International Journal of HRD Practice Policy and Research, 111.

Frey, C. B., & Osborne, M. A. (2017). The future of employment: How susceptible are jobs to computerisation? Technological Forecasting & Social Change, 114, 254–280.

Gerrikagoitia, J. K., Unamuno, G., Urkia, E., & Serna, A. (2019). Digital manufacturing platforms in the Industry 4.0 from private and public perspectives. Applied Sciences , 9, 1–12.

Glossary Gartner. (2022). Digitalization. https://www.gartner.com/en/information-technology/glossary/digitalization

Graham, A., Davey-Evans, S., & Toon, I. (2012). The developing role of the financial controller:

evidence from the UK. Journal of Applied Accounting Research, 13(1), 71–88.

Gudivada, V. N., Baeza-Yates, R., Labs, Y., & Raghavan, V. v. (2015). Big Data: Promises and Problems. Computer, 48(3), 20–23.

Gupta, M., & George, J. F. (2016). Toward the development of a big data analytics capability.

Information & Management, 53(8), 1049–1064.

Gupta, S., Drave, V. A., Dwivedi, Y. K., Baabdullah, A. M., & Ismagilova, E. (2020). Achieving superior organizational performance via big data predictive analytics: A dynamic capability view.

Industrial Marketing Management, 90, 581–592.

Gupta, S., Väätänen, J., & Khaneja, S. (2016). Value added reseller or value at risk: The dark side of relationships with VARs. Industrial Marketing Management, 55, 110–118.

Hair, J., Black, W. C., Babin, B. J., & Anderson, R. E. (2009). Multivariate Data Analysis: A Global Perspective. In Faculty Publications (7th Edition). Prentice Hall.

Huang, F., & Vasarhelyi, M. A. (2019). Applying robotic process automation (RPA) in auditing: A framework. International Journal of Accounting Information Systems, 35, 1–11.

Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business Horizons, 61(4), 577–586.

Kelly, J. E. (2015). Computing, cognition and the future of knowing How humans and machines are forging a new age of understanding. IBM Research, 2, 1–12.

Krumwiede, K. (2017). How to Keep Your Job - Strategic Finance.

https://sfmagazine.com/technotes/september-2017-how-to-keep-your-job/

Kusi-Sarpong, S., Orji, J., Gupta, H., & Kunc, M. (2021). Risks associated with the implementation of big data analytics in sustainable supply chains. Omega, 105, 1–14.

Lewicki, P., Tochowigcz, J., & van Genuchten, J. (2019). Are Robots Taking Our Jobs? A RoboPlatform at a Bank. IEEE Software, 36(3), 101–104.

Lin, T.-C., Ling-hsing Chang, C., & Tsai, W.-C. (2016). The influences of knowledge loss and knowledge retention mechanisms on the absorptive capacity and performance of a MIS department. Management Decision , 54(7), 1757–1787.

Martínez-Caro, E., Cegarra-Navarro, J. G., & Alfonso-Ruiz, F. J. (2020). Digital technologies and firm performance: The role of digital organisational culture. Technological Forecasting & Social Change, 154, 1–10.

Matt, C., Hess, T., & Benlian, A. (2015). Digital Transformation Strategies. Business & Information Systems Engineering, 57(5), 339–343.

McAfee, A., & Brynjolfsson, E. (2012). Spotlight on Big Data: The Management Revolution. Harvard Business Review, 1–9.

Mödritscher, G., & Wall, F. (2017). Controlling als interner Dienstleister 4.0. In Dienstleistungen 4.0.

Springer Gabler, Wiesbaden.

Moll, J., & Yigitbasioglu, O. (2019). The role of internet-related technologies in shaping the work of accountants: New directions for accounting research. The British Accounting Review, 51(6).

Möller, K., Schäffer, U., & Verbeeten, F. (2020). Digitalization in management accounting and control:

an editorial. Journal of Management Control, 31(1), 1–8.

Ng, K. K. H., Chen, C.-H., Lee, C. K. M., Jiao, J. R., & Yang, Z.-X. (2021). A systematic literature review on intelligent automation: Aligning concepts from theory, practice, and future perspectives. Advanced Engineering Informatics, 47, 1–15.

Oesterreich, T. D., & Teuteberg, F. (2019). The role of business analytics in the controllers and management accountants’ competence profiles An exploratory study on individual-level data.

Journal of Accounting & Organizational Change, 15(2), 330–356.

Payne, R. (2014). Discussion of “Digitisation, ‘Big Data’ and the transformation of accounting information” by Alnoor Bhimani and Leslie Willcocks (2014). Accounting and Business Research, 44(4), 491–495.

Pramanik, H. S., Kirtania, M., & Pani, A. K. (2019). Essence of digital transformation-Manifestations at large financial institutions from North America. Future Generation Computer Systems, 95, 323–

343.

Riemenschneider, C. K., Allen, M. W., Armstrong, D. J., & Reid, M. F. (2010). Potential Absorptive Capacity of State IT Departments: A Comparison of Perceptions of CIOs and IT Managers.

Journal of Organizational Computing and Electronic Commerce , 20, 68–90.

Rikhardsson, P., & Yigitbasioglu, O. (2018). Business intelligence & analytics in management accounting research: Status and future focus. International Journal of Accounting Information Systems, 29, 37–58.

Ritter, T., & Pedersen, C. L. (2020). Digitization capability and the digitalization of business models in business-to-business firms: Past, present, and future. Industrial Marketing Management, 86, 180–

190.

Schneider, G. P., Dai, J., Janvrin, D. J., Ajayi, K., & Raschke, R. L. (2015). Infer, Predict, and Assure:

Accounting Opportunities in Data Analytics. Accounting Horizons, 29(3), 719–742.

Siegler, M. (2010). Eric Schmidt: Every 2 Days We Create As Much Information As We Did Up To 2003. https://techcrunch.com/2010/08/04/schmidt-data/

Srinivasan, R., & Swink, M. (2018). An Investigation of Visibility and Flexibility as Complements to Supply Chain Analytics: An Organizational Information Processing Theory Perspective.

Production and Operations Management, 27(10), 1849–1867.

Tang, F., Hess, T. J., Valacich, J. S., & Sweeney, J. T. (2014). The Effects of Visualization and Interactivity on Calibration in Financial Decision-Making. Behavioral Research in Accounting, 26(1), 25–58.

Uskenbayeva, R., Kalpeyeva, Z., Satybaldiyeva, R., Moldagulova, A., & Kassymova, A. (2019).

Applying of RPA in Administrative Processes of Public Administration. 2019 IEEE 21st Conference on Business Informatics, 2, 9–12.

van den Bosch, F. A. J., Volberda, H. W., & de Boer, M. (1999). Coevolution of Firm Absorptive Capacity and Knowledge Environment: Organizational Forms and Combinative Capabilities.

Organization Science, 10(5), 551–568.

van Griethuijsen, R. A. L. F., van Eijck, M. W., Haste, H., den Brok, P. J., Skinner, N. C., Mansour, N., Gencer, A. S., & Boujaoude, S. (2015). Global Patterns in Students’ Views of Science and Interest in Science. Research in Science Education, 45(4), 581–603.

Verstegen, B. H. J., de Loo, I., Mol, P., Slagter, K., & Geerkens, H. (2007). Classifying controllers by activities: An exploratory study. Journal of Applied Management Accounting Research, 5(2), 9–

32.

Wang, S., Yeoh, W., Richards, G., Wong, S. F., & Chang, Y. (2019). Harnessing business analytics value through organizational absorptive capacity. Information & Management, 56(7), 1–16.

Yin, Y., Xu, D., Wang, X., & Zhang, L. (2020). Adversarial Feature Sampling Learning for Efficient Visual Tracking. IEEE Transactions on Automation Science and Engineering, 17(2), 847–857.

Zheng, P., Lin, T.-J., Chen, C.-H., & Xu, X. (2018). A systematic design approach for service innovation of smart product-service systems. Journal of Cleaner Production , 201, 657–667.

Zou, T., Ertug, G., & George, G. (2018). The capacity to innovate: a meta-analysis of absorptive capacity. Innovation: Organization & Management, 20(2), 87–121.

Appendices

Appendix A – Factor analysis and Cronbach Alpha analysis of the effectiveness of the Finance function

Factor analysis

Cronbach Alpha analysis

Cronbach's alpha

Test scale = mean (unstandardized items)

Number of items in the scale: 6

Scale reliability coefficient: 0,906 Factor analysis

Number of obs = 182

Retained factors = 1

Number of params = 6

Eigenvalue Variance Cumulative

1 4,069 0,678 0,678

2 0,582 0,097 0,775

3 0,447 0,074 0,850

4 0,356 0,059 0,909

5 0,317 0,053 0,962

6 0,229 0,038 1,000

Extraction m ethod: Principal com ponent analysis

Variable Factor

Q16_1 0,856

Q16_2 0,834

Q16_3 0,848

Q16_4 0,850

Q16_5 0,756

Q16_6 0,793

Component

Factor loadings (component matrix)

Appendix B – Factor analysis and Cronbach Alpha analysis of digitalization in Finance

Factor analysis

Cronbach Alpha analysis Cronbach's alpha

Test scale = mean (unstandardized items)

Number of items in the scale: 8

Scale reliability coefficient: 0,919

Factor analysis

Number of obs = 182

Retained factors = 1

Number of params = 8

Eigenvalue Variance Cumulative

1 5,125 0,641 0,641

2 0,971 0,121 0,762

3 0,446 0,056 0,818

4 0,394 0,049 0,867

5 0,344 0,043 0,910

6 0,309 0,039 0,949

7 0,256 0,032 0,981

8 0,155 0,019 1,000

Extraction m ethod: Principal com ponent analysis

Variable Factor

Q12_1 0,763

Q12_2 0,847

Q12_3 0,806

Q12_4 0,811

Q12_6 0,788

Q12_7 0,808

Q12_8 0,781

Q12_9 0,798

Component

Factor loadings (component matrix)

Appendix C – Factor analysis and Cronbach Alpha analysis of investment in technical skills of Finance professionals

Factor analysis

Cronbach Alpha analysis Factor analysis

Number of obs = 182

Retained factors = 1

Number of params = 3

Eigenvalue Variance Cumulative

1 2,200 0,733 0,733

2 0,492 0,164 0,897

3 0,308 0,103 1,000

Extraction m ethod: Principal com ponent analysis

Variable Factor Q13_1 0,810 Q13_2 0,885 Q13_3 0,872

Component

Factor loadings (component matrix)

Cronbach's alpha

Test scale = mean (unstandardized items)

Number of items in the scale: 3

Scale reliability coefficient: 0,818

Appendix D – Spearman correlation test

Table D Spearman correlation Spearman Correlation

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(1) EFF_FIN 1,00

(2) DIG_FIN 0,61 1,00

(3) INV_SKILLS 0,63 0,69 1,00

(4) D_MANUFACTURING 0,05 0,05 0,02 1,00

(5) D_FSERVICES 0,11 0,03 0,07 -0,30 1,00

(6) D_NFSERVICES 0,07 0,07 0,03 -0,55 -0,27 1,00

(7) D_PUBLICSEC -0,27 -0,19 -0,14 -0,34 -0,17 -0,31 1,00

(8) FIRM_SIZE 0,14 0,24 0,16 0,10 -0,06 -0,02 -0,05 1,00

(9) DEG_DIG 0,48 0,57 0,59 -0,04 0,19 0,07 -0,20 0,12 1,00

(10) ANN_GROW 0,09 0,09 0,14 0,04 0,15 -0,00 -0,19 -0,05 0,20 1,00

** p<0,01, * p<0,05

Variables

Appendix E – VIF values multicollinearity

The VIF values for each hypothesis are shown in this appendix which is done for multicollinearity. For none of the items is multicollinearity an issue.

Collinearity statistics

Variable VIF

DIG_FIN 1,577

D_MANUFACTURING 1,347

D_FSERVICES 1,246

D_PUBLICSEC 1,316

FIRM_SIZE 1,082

DEG_DIG 1,567

ANN_GROW 1,068

Mean VIF 1,315

Table E.1 VIF value hypothesis I

Collinearity statistics

Variable VIF

INV_SKILL 1,600

D_MANUFACTURING 1,347

D_FSERVICES 1,240

D_PUBLICSEC 1,314

FIRM_SIZE 1,052

DEG_DIG 1,631

ANN_GROW 1,070

Mean VIF 1,322

Table E.2 VIF value hypothesis II

Table E.3 VIF value hypothesis III

Collinearity statistics

Variable VIF

DIG_FIN 2,365

INV_SKILL 2,169

INT_DIGFIN_INVSKILL 1,169

D_MANUFACTURING 1,348

D_FSERVICES 1,249

D_PUBLICSEC 1,333

FIRM_SIZE 1,084

DEG_DIG 1,817

ANN_GROW 1,083

Mean VIF 1,513

Appendix F – Factor analysis split-up of DIG_FIN

Rotated Component Matrix

Component

1 2

DIG_AUT (1) 0,737

DIG_AUT (2) 0,828

DIG_AUT (3) 0,882

DIG_AUT (4) 0,807

DIG_DAT (5) 0,854

DIG_DAT (6) 0,820

DIG_DAT (7) 0,818

DIG_DAT (8) 0,710

Table F Factor analysis DIG_FIN

Appendix G – Robustness check

In the robustness check, the regression analysis has been performed with the factor of the variables.

Table G.1 Regression analysis hypothesis I

Table G.2 Regression analysis hypothesis II

Regression hypothesis I

Unstand. B Std. Err. Coeff. Beta t-value p-value Sig

CONSTANT 0,095 0,196 0,484 0,629

DIG_FIN 0,507 0,070 0,507 7,272 0,000 **

D_MANUFACTURING 0,042 0,135 0,020 0,310 0,757

D_FSERVICES 0,170 0,190 0,057 0,896 0,372

D_PUBLICSEC -0,465 0,178 -0,171 -2,615 0,010 **

FIRM_SIZE 0,001 0,025 0,003 0,049 0,961

DEG_DIG 0,152 0,069 0,057 0,896 0,372

ANN_GROW -0,026 0,054 -0,028 -0,481 0,631

** p<0,01, * p<0,05

Adjusted R2 0,42 N 182

R2 0,44 F-test 19,47 **

EFF_FIN

Regression hypothesis II

Unstand. B Std. Err. Coeff. Beta t-value p-value Sig

CONSTANT -0,326 0,319 -1,022 0,308

INV_SKILL 0,529 0,071 0,529 7,465 0,000 **

D_MANUFACTURING 0,004 0,134 0,002 0,028 0,978

D_FSERVICES 0,102 0,188 0,034 0,544 0,587

D_PUBLICSEC -0,512 0,175 -0,188 -2,920 0,004 **

FIRM_SIZE 0,013 0,024 0,031 0,543 0,588

DEG_DIG 0,087 0,052 0,119 1,662 0,098

ANN_GROW -0,034 0,053 -0,038 -0,647 0,519

** p<0,01, * p<0,05

Adjusted R2 0,43 N 182

R2 0,45 F-test 20,51 **

EFF_FIN