• No results found

5.E. Electrical measurements 93

5.E Electrical measurements

Figure 5.14: Current-voltage characteristics of PDEG-1, PTEG-1, and PTeEG-1 doped with n-DMBI, before (solid lines) and after (dashed lines) the application of a long duration bias voltage stress. n-DMBI doped PTeEG-1, which undergoes a substantial ionic drift under the bias voltage stress, shows a super linear I-V curve after the removal of the bias, as discussed in chapter 4.



[1] J. Liu, M. P. Garman, J. Dong, B. van der Zee, L. Qiu, G. Portale, J. C. Hummelen, and L. J. A. Koster, “Dop-ing engineer“Dop-ing enables highly conductive and thermally stable n-type organic thermoelectrics with high power factor,” ACS Applied Energy Materials 2(9), pp. 6664–6671, 2019.

[2] W. Shi, D. Wang, and Z. Shuai, “High-performance organic thermoelectric materials: Theoretical insights and computational design,” Advanced Electronic Materials , p. 1800882, 2019.

[3] N. Koch, “Organic electronic devices and their functional interfaces,” ChemPhysChem 8(10), pp. 1438–

1455, 2007.

[4] A. Yamamori, C. Adachi, T. Koyama, and Y. Taniguchi, “Doped organic light emitting diodes having a 650-nm-thick hole transport layer,” Applied Physics Letters 72(17), pp. 2147–2149, 1998.

[5] M. Pfeiffer, K. Leo, X. Zhou, J. Huang, M. Hofmann, A. Werner, and J. Blochwitz-Nimoth, “Doped organic semiconductors: Physics and application in light emitting diodes,” Organic Electronics 4(2-3), pp. 89–103, 2003.

[6] G. Horowitz, “Organic field-effect transistors,” Advanced materials 10(5), pp. 365–377, 1998.

[7] Z. Wang, Y. Zou, W. Chen, Y. Huang, C. Yao, and Q. Zhang, “The role of weak molecular dopants in enhanc-ing the performance of solution-processed organic field-effect transistors,” Advanced Electronic Materi-als5(2), p. 1800547, 2019.

[8] M. Chan, S. Lai, M. Fung, C. Lee, and S. Lee, “Doping-induced efficiency enhancement in organic photo-voltaic devices,” Applied physics letters 90(2), p. 023504, 2007.

[9] S.-H. Liao, H.-J. Jhuo, Y.-S. Cheng, and S.-A. Chen, “Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (ptb7-th) for high performance,”

Advanced materials25(34), pp. 4766–4771, 2013.

[10] C.-Z. Li, C.-C. Chueh, F. Ding, H.-L. Yip, P.-W. Liang, X. Li, and A. K.-Y. Jen, “Doping of fullerenes via anion-induced electron transfer and its implication for surfactant facilitated high performance polymer solar cells,” Advanced materials 25(32), pp. 4425–4430, 2013.

[11] Y. Xu, J. Yuan, J. Sun, Y. Zhang, X. Ling, H. Wu, G. Zhang, J. Chen, Y. Wang, and W. Ma, “Widely applicable n-type molecular doping for enhanced photovoltaic performance of all-polymer solar cells,” ACS applied materials & interfaces10(3), pp. 2776–2784, 2018.

[12] Z. Wang, D. P. McMeekin, N. Sakai, S. van Reenen, K. Wojciechowski, J. B. Patel, M. B. Johnston, and H. J.

Snaith, “Efficient and air-stable mixed-cation lead mixed-halide perovskite solar cells with n-doped or-ganic electron extraction layers,” Advanced Materials 29(5), p. 1604186, 2017.

[13] J. Avila, L. Gil-Escrig, P. P. Boix, M. Sessolo, S. Albrecht, and H. J. Bolink, “Influence of doped charge trans-port layers on efficient perovskite solar cells,” Sustainable Energy & Fuels 2(11), pp. 2429–2434, 2018.

[14] W. Chen, F.-Z. Liu, X.-Y. Feng, A. B. Djurišić, W. K. Chan, and Z.-B. He, “Cesium doped niox as an effi-cient hole extraction layer for inverted planar perovskite solar cells,” Advanced Energy Materials 7(19), p. 1700722, 2017.

[15] D. De Leeuw, M. Simenon, A. Brown, and R. Einerhand, “Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices,” Synthetic Metals 87(1), pp. 53–59, 1997.


Bibliography 95

[16] Y. Sun, C.-A. Di, W. Xu, and D. Zhu, “Advances in n-type organic thermoelectric materials and devices,”

Advanced Electronic Materials , p. 1800825, 2019.

[17] T. Takenobu, T. Takano, M. Shiraishi, Y. Murakami, M. Ata, H. Kataura, Y. Achiba, and Y. Iwasa, “Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes,” Nature materials2(10), p. 683, 2003.

[18] G. Kakavelakis, T. Maksudov, D. Konios, I. Paradisanos, G. Kioseoglou, E. Stratakis, and E. Kymakis, “Effi-cient and highly air stable planar inverted perovskite solar cells with reduced graphene oxide doped pcbm electron transporting layer,” Advanced Energy Materials 7(7), p. 1602120, 2017.

[19] Z. Bin, L. Duan, and Y. Qiu, “Air stable organic salt as an n-type dopant for efficient and stable organic light-emitting diodes,” ACS applied materials & interfaces 7(12), pp. 6444–6450, 2015.

[20] P. Wei, J. H. Oh, G. Dong, and Z. Bao, “Use of a 1 h-benzoimidazole derivative as an n-type dopant and to enable air-stable solution-processed n-channel organic thin-film transistors,” Journal of the American Chemical Society132(26), pp. 8852–8853, 2010.

[21] D. Yuan, Y. Guo, Y. Zeng, Q. Fan, J. Wang, Y. Yi, and X. Zhu, “Air-stable n-type thermoelectric materials enabled by organic diradicaloids,” Angewandte Chemie International Edition , 2019.

[22] K. Yang, X. Zhang, A. Harbuzaru, L. Wang, Y. Wang, C. Koh, H. Guo, Y. Shi, J. Chen, H. Sun, et al., “Sta-ble organic diradicals based on fused quinoidal oligothiophene imides with high electrical conductivity,”

Journal of the American Chemical Society142(9), pp. 4329–4340, 2020.

[23] M. Salvador, N. Gasparini, J. D. Perea, S. H. Paleti, A. Distler, L. N. Inasaridze, P. A. Troshin, L. Lüer, H.-J. Egelhaaf, and C. Brabec, “Suppressing photooxidation of conjugated polymers and their blends with fullerenes through nickel chelates,” Energy & Environmental Science 10(9), pp. 2005–2016, 2017.

[24] J. Liu, L. Qiu, G. Portale, M. Koopmans, G. Ten Brink, J. C. Hummelen, and L. J. A. Koster, “N-type organic thermoelectrics: Improved power factor by tailoring host–dopant miscibility,” Advanced Materials 29(36), p. 1701641, 2017.

[25] L. Qiu, J. Liu, R. Alessandri, X. Qiu, M. Koopmans, R. W. Havenith, S. J. Marrink, R. C. Chiechi, L. J. A. Koster, and J. C. Hummelen, “Enhancing doping efficiency by improving host-dopant miscibility for fullerene-based n-type thermoelectrics,” Journal of Materials Chemistry A 5(40), pp. 21234–21241, 2017.

[26] J. Liu, S. Maity, N. Roosloot, X. Qiu, L. Qiu, R. C. Chiechi, J. C. Hummelen, E. von Hauff, and L. J. A. Koster,

“The effect of electrostatic interaction on n-type doping efficiency of fullerene derivatives,” Advanced Electronic Materials , p. 1800959, 2019.

[27] J. Liu, L. Qiu, G. Portale, S. Torabi, M. C. Stuart, X. Qiu, M. Koopmans, R. C. Chiechi, J. C. Hummelen, and L. J. A. Koster, “Side-chain effects on n-type organic thermoelectrics: A case study of fullerene derivatives,”

Nano Energy52, pp. 183–191, 2018.

[28] L. Müller, S.-Y. Rhim, V. Sivanesan, D. Wang, S. Hietzschold, P. Reiser, E. Mankel, S. Beck, S. Barlow, S. R.

Marder, et al., “Electric-field-controlled dopant distribution in organic semiconductors,” Advanced Ma-terials29(30), p. 1701466, 2017.

[29] P. Reiser, F. S. Benneckendorf, M.-M. Barf, L. Müller, R. Bäuerle, S. Hillebrandt, S. Beck, R. Lovrincic, E. Mankel, J. Freudenberg, et al., “n-type doping of organic semiconductors: Immobilization via covalent anchoring,” Chemistry of Materials 31(11), pp. 4213–4221, 2019.


[30] J. Li, C. W. Rochester, I. E. Jacobs, E. W. Aasen, S. Friedrich, P. Stroeve, and A. J. Moulé, “The effect of thermal annealing on dopant site choice in conjugated polymers,” Organic Electronics 33, pp. 23–31, 2016.

[31] D. Shriver and P. Bruce, “Polymer electrolytes i: General principles,” in Solid state electrochemistry, p. 95, Cambridge University Press Cambridge, 1995.

[32] S. Takeoka, H. Ohno, and E. Tsuchida, “Recent advancement of ion-conductive polymers,” Polymers for Advanced Technologies4(2-3), pp. 53–73, 1993.

[33] Y. Tominaga, V. Nanthana, and D. Tohyama, “Ionic conduction in poly (ethylene carbonate)-based rub-bery electrolytes including lithium salts,” Polymer journal 44(12), pp. 1155–1158, 2012.

[34] M. A. Ratner and D. F. Shriver, “Ion transport in solvent-free polymers,” Chemical Reviews 88(1), pp. 109–

124, 1988.

[35] D. Fenton, “Complexes of alkali metal ions with poly (ethylene oxide),” polymer 14, p. 589, 1973.

[36] F. Jahani Bahnamiri, Synthetic strategies for modifying dielectric properties and the electron mobility of fullerene derivatives. PhD thesis, University of Groningen, 2016.

[37] D. E. Markov, E. Amsterdam, P. W. M. Blom, A. B. Sieval, and J. C. Hummelen, “Accurate measurement of the exciton diffusion length in a conjugated polymer using a heterostructure with a side-chain cross-linked fullerene layer,” The Journal of Physical Chemistry A 109(24), pp. 5266–5274, 2005.

[38] M. J. Reddy, J. S. Kumar, U. S. Rao, and P. P. Chu, “Structural and ionic conductivity of peo blend peg solid polymer electrolyte,” Solid state ionics 177(3-4), pp. 253–256, 2006.

[39] V. M. Le Corre, M. Stolterfoht, L. Perdigón Toro, M. Feuerstein, C. Wolff, L. Gil-Escrig, H. J. Bolink, D. Neher, andL.J.A.Koster, “Chargetransportlayerslimitingtheefficiency ofperovskitesolarcells: Howtooptimize conductivity, doping, and thickness,” ACS Applied Energy Materials 2(9), pp. 6280–6287, 2019.

[40] F. Jahani, S. Torabi, R. C. Chiechi, L. J. A. Koster, and J. C. Hummelen, “Fullerene derivatives with increased dielectric constants,” Chemical Communications 50(73), pp. 10645–10647, 2014.

[41] F. Jahani, S. Torabi, R. C. Chiechi, L. J. A. Koster, and J. C. Hummelen, “Fullerene derivatives with increased dielectric constants,” Chem. Commun. 50, pp. 10645–10647, 2014.

[42] D. E. Markov, E. Amsterdam, P. Blom, A. B. Sieval, and J. C. Hummelen, “Accurate measurement of the exciton diffusion length in a conjugated polymer using a heterostructure with a side-chain cross-linked fullerene layer.,” J. Phys. Chem. A 109, pp. 5266–5274, 2005.

[43] J. Liu, L. Qiu, S. Portale, G.and Torabi, M. Stuart, X. Qiu, M. Koopmans, R. Chiechi, J. C. Hummelen, and L.J.A.Koster, “Side-chaineffectsonn-typeorganicthermoelectrics: Acasestudyoffullerenederivatives.,”

Nano Energy52, pp. 183–191, 2018.