• No results found

A wealth of new information contributing to our understanding of carbon dioxide fixation in chemoautotrophs has been gathered since the previous comprehensive reviews on the subject. However, for every question answered, many others have been unmasked. For example, how does the carboxysome enhance CO2 fixation? How is the expression of the

carboxysome genes regulated? How is the carboxysome assembled? Where are the Calvin cycle genes organized in chemoautotrophic bacteria in which the cbbLS is not clustered with other cbb genes? Is CO2 fixation controlled by a phospho-relay system as is the case in RB.

sphaeroides? Does NADPH activate CbbR in vivo? What is the mechanism by which CbbR activates transcription of the Calvin cycle genes? Is CbbR involved in the regulation of carboxysome gene expression? How did the Calvin cycle evolve? The answer to these, as well as to many other questions, will likely be the subject of a future review.

ACKNOWLEDGMENTS

Some of the material in this article is based on work supported by the Cooperative State Research Service, US Department of Agriculture, under agreement No. 92-37306-7663 (JMS); a National Science Foundation Grant, MCB-9513481 (JMS); a grant from the Royal Society (WGM); and a European Union HumanCapital and Mobility Institutional Grant (ERBCHBGCT930293) (WGM). We wish to thank K. Verschueren and T. Wilkinson of the Department of Chemistry, University of York, for helpful discussions on CysB structural data.

Reference list

1. Abdelal ATH, Schlegel HG. 1974. Purification and regulatory properties of phosphoribulokinase from Hydrogenomonas eutropha H16. Biochem. J. 139:481–89

2. Amachi T, Bowien B. 1979. Characterization of two fructose bisphosphatase isoenzymes from the hydrogen bacterium Nocardia opaca 1b. J. Gen. Microbiol. 113:347–56

3. Andersen K, Wilke-Douglas M. 1987. Genetic and physical mapping and expression in Pseudomonas aeruginosa of the chromosomally encoded ribulose bisphosphate carboxylase genes of Alcaligenes eutrophus. J. Bacteriol. 169:1997–2004

4. Ballard RW, MacElroy RD. 1971. Phosphoenolpyruvate, a new inhibitor of phosphoribulokinase in Pseudomonas facilis. Biochem. Biophys. Res. Commun. 44:614–18 5. Beudeker RF, Cannon GC, Kuenen JG, Shively JM. 1980. Relations between

D-ribulose-1,5-bisphosphate carboxylase, carboxysomes, and CO2 fixing capacity in the obligate chemolithotroph Thiobacillus neapolitanus grown under different limitations in the chemostat.

Arch. Microbiol. 124:185–89

6. Beudeker RF, Gottschal JC, Kuenen JG. 1982. Reactivity versus flexibility in thiobacilli.

Antonie van Leeuwenhoek J. Microbiol. Serol. 48:39–51

7. Biederman M, Westphal K. 1979. Chemical composition and stability of Nb1-particles from Nitrobacter agilis. Arch. Microbiol. 121:187–91

8. Bömmer D, Schäferjohann J, Bowien B. 1996. Identification of cbbBc as an additional distal gene of the chromosomal cbb CO2 fixation operon from Ralstonia eutropha. Arch. Microbiol.

166:245–51

9. Bowien B, Friedrich B, Friedrich C. 1984. Involvement of megaplasmids in heterotrophic derepression of the carbon-dioxide assimilating enzyme system in Alcaligenes spp. Arch.

Microbiol. 139:305–10

10. Cannon GC, Shively JM. 1983. Characterization of a homogenous preparation of carboxysomes from Thiobacillus neapolitanus. Arch. Microbiol. 134:52–59

11. Caspi R, Haygood MG, Tebo BM. 1996. Unusual ribulose-1,5-bisphosphate carboxylase/oxygenase genes from a marine manganese-oxidizing bacterium. Microbiology 142:2549–59

12. Cavanaugh CM. 1994. Microbial symbiosis: patterns of diversity in the marine environment.

Am. Zool. 34:79–89

13. Cavanaugh CM, Levering PR, Maki JS, Mitchell R, Lidstrom ME. 1987. Symbiosis of methylotrophic bacteria and deep-sea mussels. Nature 325:346–48

14. Cavanaugh CM, Robinson JJ. 1995. CO2 fixation in chemoautotroph-invertebrate symbiosis:

expression of form I and form II RuBisCO. In Microbial Growth on C1 Compounds, ed. ME Lidstrom, FR Tabita, pp. 285–92. Dordrecht: Kluwer

15. Chang M, Crawford IP. 1991. In vitro determination of the effect of indoleglycerol phosphate on the interaction of purified TrpI protein with its DNA-binding sites. J. Bacteriol. 173:1590–97 16. Chen KY, Morris JC. 1972. Kinetics of oxidation of aqueous sulfide by O2. Environ. Sci.

Technol. 6:529–37

17. Chen P, Andersson DI, Roth JR. 1994. The control region of the pdu/cob regulon in Salmonella typhimurium. J. Bacteriol. 176:5474–82

18. Chen Z, Green D, Westhoff C, Spreitzer RJ. 1990. Nuclear mutation restores the reduced CO2/O2 specificity of ribulose bisphosphate carboxylase/oxygenase in a temperature-conditional chloroplast mutant of Chlamydomonas reinhardtii. Arch. Biochem. Biophys.

283:60–67

19. Chung SY, Yaguchi T, Nishihara H, Igarashi Y, Kodama T. 1993. Purification of form L2

RuBisCO from a marine obligately autotrophic hydrogen-oxidizing bacterium. FEMS Microbiol. Lett. 109:49–54

20. Codd GA. 1988. Carboxysomes and ribulose bisphosphate carboxylase/oxygenase. In Advances in Microbial Physiology, ed. AH Ross, DW Tempest, pp. 115–64. London:

Academic

21. Cohen Y, de Jonge I, Kuenen JG. 1979. Excretion of glycolate by Thiobacillus neapolitanus grown in continuous culture. Arch. Microbiol. 122:189–94

22. Corliss JB, Dymond J, Gordon J, Edmond JM, Herzen RPV, et al. 1979. Submarine thermal springs on the Galapagos Rift. Science 203:1073–83

23. Croes LM, Meijer WG, Dijkhuizen L. 1991. Regulation of methanol oxidation and carbon dioxide fixation in Xanthobacter strain 25a grownin continuous culture. Arch. Microbiol.

155:159–63

24. Delwiche CF, Palmer JD. 1996. Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids. Mol. Biol. Evol. 13:873–82

25. Dijkhuizen L, Harder W. 1979. Regulation of autotrophic and heterotrophic metabolism in Pseudomonas oxalaticus OX1. Growth on mixtures of acetate and formate in continuous culture. Arch. Microbiol. 123:47–53

26. Dijkhuizen L, Knight M, Harder W. 1978. Metabolic regulation in Pseudomonas oxalaticus OX1. Autotrophic and heterotrophic growth on mixed substrates. Arch. Microbiol. 116:77–83 27. Distel DL, Felbeck H, Cavanaugh CM. 1994. Evidence for phylogenetic congruence among

sulfur-oxidizing chemoautotrophic bacterial endosymbionts and their bivalve hosts. J. Mol.

Biol. 38:533–42

28. Distel DL, Lee HKW, Cavanaugh CM. 1995. Intracellular coexistence of methano- and thioautotrophic bacteria in a hydrothermal vent mussel. Proc. Natl. Acad. Sci. USA 92:9598–

602

29. Dubilier N, Giere O, Distel DL, Cavanaugh CM. 1995. Characterization of chemoautotrophic bacterial symbionts in a gutless marine worm (Oligochaeta, Annelida) by phylogenetic 16S rRNA sequence analysis and in situ hybridization. Appl. Environ. Microbiol. 61:2346–50 30. Ebert A. 1982. Ribulose-1,5-bisphosphatecarboxylase in Nitrobacter. PhD thesis. Univ.

Hamburg, Hamburg, Germany. 84 pp.

31. Ecker C, Reh M, Schlegel HG. 1986. Enzymes of the autotrophic pathway in mating partners and transconjugants of Nocardia opaca 1b and Rhodococcus erythropolis. Arch. Microbiol.

145:280–86

32. Eisen JA, Smith SW, Cavanaugh CM. 1992. Phylogenetic relationships of chemoautotrophic bacterial symbionts of Solemya velum Say (Mollusca: Bivalvia) determined by 16S rRNA gene sequence analysis. J. Bacteriol. 174:3416–21

33. Emerson S, Cranston RE, Liss PS. 1979. Redox species in a reducing fjord: equilibrium and kinetic considerations. Deep-Sea Res. 26:859–78

34. English RS, Jin S, Shively JM. 1995. Use of electroporation to generate a Thiobacillus neapolitanus carboxysome mutant. Appl. Environ. Microbiol. 61:3256–60

35. English RS, Lorbach SC, Qin X, Shively JM. 1994. Isolation and characterization of a carboxysome shell gene from Thiobacillus neapolitanus. Mol. Microbiol. 12:647–54

36. English RS, Williams CA, Lorbach SC, Shively JM. 1992. Two forms of ribulose-1,5-bisphosphate carboxylase/oxygenase from Thiobacillus denitrificans. FEMS Microbiol. Lett.

94:111–19

37. Eraso JM, Kaplan S. 1996. Complex regulatory activities associated with the histidine kinase PrrB in expression of photosynthesis genes in Rhodobacter sphaeroides 2.4.1. J. Bacteriol.

178:7037–46

38. Falcone DL, Tabita FR. 1993. Complementation analysis and regulation of CO2 fixation gene expression in a ribulose-1,5-bisphosphate carboxylase/oxygenase deletion strain of Rhodospirillum rubrum. J. Bacteriol. 175:5066–77

39. Fisher CR, Brooks JM, Vodenichar JS, Zande JM, Childress JJ, et al. 1993. The co-occurrence of methanotrophic and chemoautotrophic sulfur-oxidizing bacterial symbionts in a deep-sea mussel. Marine Ecol. 14:277–89

40. Fisher RF, Long SR. 1993. Interactions of NodD at the nod box: NodD binds to two distinct sites on the same face of the helix and induces a bend in the DNA. J. Mol. Biol. 233:336–48 41. Freter A, Bowien B. 1994. Identification of a novel gene, aut, involved in autotrophic growth

of Alcaligenes eutrophus. J. Bacteriol. 176:5401–8

42. Friedberg D, Kaplan A, Ariel R, Kessel M, Seijffers J. 1989. The 5’–flanking region of the gene encoding the large subunit of ribulose-1,5-bisphosphate carboxylase oxygenase is crucial for growth of the cyanobacterium Synechococcus sp. strain PCC 7942 at the level for CO2 in air. J. Bacteriol. 171:6069–76

43. Friedrich B, Hogrefe C, Schlegel HG. 1981. Naturally occurring genetic transfer of hydrogen-oxidizing ability between strains of Alcaligenes eutrophus. J. Bacteriol. 147:198–

205

44. Friedrich CG. 1982. Derepression of hydrogenase during limitation of electron donors and derepression of ribulose bisphosphate carboxylase during carbon limitation of Alcaligenes eutrophus. J. Bacteriol. 149:203–10

45. Friedrich CG, Friedrich B, Bowien B. 1981. Formation of enzymes of autotrophic metabolism during heterotrophic growth of Alcaligenes eutrophus. J. Gen. Microbiol. 122:69–

78

46. Gale NL, Beck JV. 1966. Competitive inhibition of phosphoribulokinase by AMP. Biochem.

Biophys. Res. Commun. 22:792–96

47. Gibson JL, Tabita FR. 1987. Organization of phosphoribulokinase and ribulose bisphosphate carboxylase/oxygenase genes in Rhodopseudomonas (Rhodobacter) sphaeroides. J.

Bacteriol. 169:3685–90

48. Gibson JL, Tabita FR. 1993. Nucleotide sequence and functional analysis of CbbR, a positive regulator of the Calvin cycle operons of Rhodobacter sphaeroides. J. Bacteriol.

175:5778–84

49. Gibson JL, Tabita FR. 1996. The molecular regulation of the reductive pentose phosphate pathway in proteobacteria and cyanobacteria. Arch. Microbiol. 166:141–50

50. Gibson JL, Tabita FR. 1997. Analysis of the cbbXYZ operon in Rhodobacter sphaeroides. J.

Bacteriol. 179:663–69

51. Gottschal JC, Kuenen JG. 1980. Mixotrophic growth of Thiobacillus A2 on acetate and thiosulfate as growth limiting substrates in the chemostat. Arch. Microbiol. 126:33–42 52. Grassle JF. 1985. Hydrothermal vent animals: distribution and biology. Science 229:713–17 53. Hallbeck L, Stahl F, Pedersen K. 1993. Phylogeny and phenotypic characterization of the

stalk-forming and iron-oxidizing bacterium Gallionella ferruginea. J. Gen. Microbiol.

139:1531–35

54. Hallenbeck PL, Lerchen R, Hessler P, Kaplan S. 1990. Roles of CfxA, CfxB, and external electron acceptors in regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase expression in Rhodobacter sphaeroides. J. Bacteriol. 172:1736–48

55. Hartman FC, Harpel MR. 1994. Structure, function, regulation, and assembly of D-ribulose-1,5-bisphosphate carboxylase/oxygenase. Annu. Rev. Biochem. 63:197–234

56. Hernandez JM, Baker SH, Lorbach SC, Shively JM, Tabita FR. 1996. Deduced amino acid sequence, functional expression, and unique enzymatic properties of the form I and form II ribulose bisphosphate carboxylase/oxygenase from the chemoautotrophic bacterium Thiobacillus denitrificans. J. Bacteriol. 178:347–56

57. Holthuijzen YA, van Breeman JFL, Konings WN, van Bruggen EFJ. 1986. Electron microscopic studies of carboxysomes of Thiobacillus neapolitanus. Arch. Microbiol. 144:258–

62

58. Holthuijzen YA, van Breemen JFL, Kuenen JG, Konings WN. 1986. Protein composition of the carboxysomes of Thiobacillus neapolitanus. Arch. Microbiol. 144:398–404

59. Husemann M, Klintworth R, Büttcher V, Salnikow J, Weissenborn C, et al. 1988.

Chromosomally and plasmid-encoded gene clusters for CO2 fixation (cfx) genes in Alcaligenes eutrophus. Mol. Gen. Genet. 214:112–20

60. Igarashi Y, Kodama T. 1995. Genes related to carbon dioxide fixation in Hydrogenovibrio marinus and Pseudomonas hydrogenothermophila. In Microbial Growth on C1 Compounds, ed. ME Lidstrom, FR Tabita, pp. 88–93. Dordrecht: Kluwer

61. Im D, Friedrich CG. 1983. Fluoride, hydrogen and formate activate ribulose bisphosphate carboxylase formation in Alcaligenes eutrophus. J. Bacteriol. 154:803– 8

62. Jackson JB, Crofts AR. 1968. Energy-linked reduction of nicotinamide adenine dinucleotides in cells of Rhodospirillum rubrum. Biochem. Biophys. Res. Commun. 32:908–15 63. Jannasch HW, Mottl MJ. 1985. Geomicrobiology of deep-sea hydrothermal vents. Science

229:717–25

64. Johnson EJ, MacElroy RD. 1973. Regulation in the chemolithotroph Thiobacillus neapolitanus: fructose-1,6-diphosphate. Arch. Microbiol. 93:23–28

65. Jordan DB, Ogren WL. 1981. Species variation in the specificity of ribulose biphosphate carboxylase/oxygenase. Nature 291:513–15

66. Jorgensen BB, Revsbech NP. 1983. Colorless sulfur bacteria, Beggiatoa spp. and Thiovulum spp. in O2 and H2S microgradients. Appl. Environ. Microbiol. 45:1261–70

67. Joshi H, Tabita FR. 1996. A global two component signal transduction system that integrates the control of photosynthesis, carbon dioxide assimilation, and nitrogen fixation. Proc. Natl.

Acad. Sci. USA 93:14515–20

68. Jouanneau Y, Tabita FR. 1986. Independent regulation of synthesis of form I and form II ribulose bisphosphate carboxylase-oxygenase in Rhodopseudomonas sphaeroides. J.

Bacteriol. 165:620–24

69. Kaplan A, Friedberg D, Schwarz R, Ariel R, Seijffers J, et al. 1989. The “CO2 concentrating mechanism” of cyanobacteria: physiological, molecular and theoretical studies. Photosynth.

Res. 17:243–55

70. Kiesow LA, Lindsley BF, Bless JW. 1977. Phosphoribulokinase from Nitrobacter winogradski: activation by reduced nicotinamide dinucleotide and inhibition by pyridoxal phosphate. J. Bacteriol. 130:20–25

71. Knight M, Dijkhuizen L, Harder W. 1978. Metabolic regulation in Pseudomonas oxalaticus OX1. Enzyme and coenzyme concentration changes during substrate transition experiments.

Arch. Microbiol. 116:85–90

72. Kobayashi H, Viale AM, Takabe T, Akazawa T, Wada K, et al. 1991. Sequence and expression of genes encoding the large and small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase from Chromatium vinosum. Gene 97:55–62

73. Krieger TJ, Miziorko HM. 1986. Affinity labeling and purification of spinach leaf ribulose-5-phosphate kinase. Biochemistry 25:3496–501

74. Krueger DM, Cavanaugh CM. 1997. Phylogenetic diversity of bacterial symbionts of Solemya hosts based on comparative sequence analysis of 16S rRNA genes. Appl. Environ.

Microbiol. 63:91–98

75. Kuenen G, Bos P. 1989. Habitats and ecological niches of chemolitho(auto)trophic bacteria.

In Autotrophic Bacteria, ed. HG Schlegel, B Bowien, pp. 53–80. Madison: Sci. Tech.

76. Kusano T, Sugawara K. 1993. Specific binding of Thiobacillus ferrooxidans RbcR to the intergenic sequence between the rbc operon and the rbcR gene. J. Bacteriol. 175:1019–25 77. Kusano T, Takeshima T, Inoue C, Sugawara K. 1991. Evidence for two sets of structural

genes coding for ribulose bisphosphate carboxylase in Thiobacillus ferrooxidans. J. Bacteriol.

173:7313–23

78. Kusian B, Bednardski R, Husemann M, Bowien B. 1995. Characterization of the duplicate ribulose-1,5-bisphosphate carboxylase genes and cbb promoters of Alcaligenes eutrophus. J.

Bacteriol. 177:4442–50

79. Kusian B, Bowien B. 1995. Operator binding of the CbbR protein, which activates the duplicate cbb CO2 assimilation operons of Alcaligenes eutrophus. J. Bacteriol. 177:6568–74 80. Kusian B, Bowien B. 1997. Organization and regulation of cbb CO2 assimilation genes in

autotrophic bacteria. FEMS Microbiol. Rev. 21:135–55

81. Lanaras T, Codd GA. 1981. Ribulose-1,5-bisphosphate carboxylase and polyhedral bodies of Chlorogloeopsis fritschii. Planta 153:279–85

82. Lanaras T, Cook CM, Wood AP, Kelly DP, Codd GA. 1991. Purification of ribulose-1,5-bisphosphate carboxylase/oxygenase and of carboxysomes from Thiobacillus thyasiris the putative symbiont of Thyasira flexuosa (Montagu). Arch. Microbiol. 156:338–43

83. Lanaras T, Hawthornthwaite AM, Codd GA. 1985. Localization of carbonic anhydrase in the cyanobacterium Chlorogloeopsis fritschii. FEMS Microbiol. Lett. 26:285–88

84. Lane DJ, Harrison AP, Stahl D, Pace B, Giovannoni S, et al. 1992. Evolutionary relationships among sulfur- and iron-oxidizing bacteria. J. Bacteriol. 174:269–78

85. Lawrence JG. 1997. Selfish operons and speciation by gene transfer. Trends Microbiol.

5:355–59

86. Leadbeater L, Bowien B. 1984. Control of autotrophic carbon assimilation in Alcaligenes eutrophus by the inactivation and reactivation of phosphoribulokinase. J. Bacteriol. 157:95–99 87. Leadbeater L, Siebert K, Schobert P, Bowien. B. 1982. Relationship between activities and protein levels of ribulose bisphosphate carboxylase and phosphoribulokinase in Alcaligenes eutrophus. FEMS Microbiol. Lett. 14:263–66

88. Lehmicke LG, Lidstrom ME. 1985. Organization of genes necessary for growth of the hydrogen-methanol autotroph Xanthobacter sp. strain H4-14 on hydrogen and carbon dioxide.

J. Bacteriol. 162:1244–49

89. Lolis E, Petsko GA. 1990. Crystallographic analysis of the complex between triosephosphate isomerase and 2-phosphoglycolate at 2.5 Å resolution: implication for catalysis. Biochemistry 29:6619–25

90. Lorbach SC, Shively JM. 1995. Identification, isolation, and sequencing of the ribulose bisphosphate carboxylase/oxygenase genes (cbbRI and cbbRII) in Thiobacillus denitrificans.

Abstr. Annu. Meet. Am. Soc. Microbiol., p. 502 (Abstr.)

91. MacElroy RD, Johnson EJ, Johnson MK. 1968. Characterization of ribulose diphosphate carboxylase and phosphoribulokinase from Thiobacillus thioparus and Thiobacillus neapolitanus. Arch. Biochem. Biophys. 127:310–16

92. MacElroy RD, Johnson EJ, Johnson MK. 1969. Control of ATP-dependent CO2 fixation in extracts of Hydrogenomonas facilis: NADH regulation of phosphoribulokinase. Arch. Biochem.

Biophys. 131:272–75

93. MacElroy RD, Mack HM, Johnson EJ. 1972. Properties of phosphoribulokinase from Thiobacillus neapolitanus. J. Bacteriol. 112:532–38

94. March JJ, Lebherz HG. 1992. Fructose bisphosphate aldolases: an evolutionary history.

Trends Biochem. Sci. 17:110–13

95. Marco E, Martinez I, Ronen-Tarazi M, Orus I, Kaplan A. 1994. Inactivation of ccmO in Synechococcus sp. strain PCC 7942 results in a mutant requiring high levels of CO2. Appl.

Environ. Microbiol. 60:1018–20

96. Martinez I, Orus I, Marco E. 1997. Carboxysome structure and function in a mutant of Synechococcus that requires high levels of CO2 for growth. Plant Physiol. Biochem. 35:137–

46

97. McFadden BA, Shively JM. 1991. Bacterial assimilation of carbon dioxide by the Calvin cycle. In Variations in Autotrophic Life, ed. JM Shively, LL Barton, pp. 25–49. London:

Academic

98. McKay RML, Gibbs SP, Espie GS. 1993. Effect of dissolved inorganic carbon on the expression of carboxysomes, localization of rubisco and mode of inorganic carbon transport in cells of the cyanobacterium Synechococcus UTEX 625. Arch. Microbiol. 159:21–29 99. Meijer WG. 1994. The Calvin cycle enzyme phosphoglycerate kinase of Xanthobacter flavus

required for autotrophic CO2 fixation is not encoded by the cbb operon. J. Bacteriol.

176:6120–26

100. Meijer WG. 1996. Genetics of CO2 fixation in methylotrophs. In Microbial Growth on C1

Compounds, ed. ME Lidstrom, FR Tabita, pp. 118–25. Dordrecht: Kluwer

101. Meijer WG, Arnberg AC, Enequist HG, P Terpstra, Lidstrom ME, et al. 1991. Identification and organization of carbon dioxide fixation genes in Xanthobacter flavus. Mol. Gen. Genet.

225:320–30

102. Meijer WG, Croes LM, Jenni B, Lehmicke LG, Lidstrom ME, et al. 1990. Characterization of Xanthobacter strains H4-14 and 25a and enzyme profiles after growth under autotrophic and heterotrophic growth conditions. Arch. Microbiol. 153:360–67

103. Meijer WG, de Boer P, van Keulen G. 1997. Xanthobacter flavus employs a single triosephosphate isomerase for heterotrophic and autotrophic metabolism. Microbiology 143:1925–31

104. Meijer WG, Dijkhuizen L. 1988. Regulation of autotrophic metabolism in Pseudomonas oxalaticus OX1 wild-type and an isocitrate-lyase-deficient mutant. J. Gen. Microbiol.

134:3231–37

105. Meijer WG, Enequist HG, Terpstra P, Dijkhuizen L. 1990. Nucleotide sequences of the genes encoding fructosebisphosphatase and phosphoribulokinase from Xanthobacter flavus H4-14. J. Gen. Microbiol. 136:2225–30

106. Meijer WG, van den Bergh ERE, Smith LM. 1996. Induction of the gap-pgk operon encoding glyceraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase of Xanthobacter flavus requires the LysR type transcriptional activator CbbR. J. Bacteriol.

178:881–87

107. Miyajima T. 1992. Biological manganese oxidation in a lake: I. Occurrence and distribution of Metallogenium sp. and its kinetic properties. Arch. Hydrobiol. 124:317–35

108. Moreira D, Amils R. 1997. Phylogeny of Thiobacillus cuprinus and other mixotrophic thiobacilli: proposal for Thiomonas gen. nov. Int. J. Syst. Bacteriol. 47:522–28

109. Morse D, Salois P, Markovic P, Hastings JW. 1995. A nuclear-encoded form II rubisco in dinoflagellates. Science 268:1622–24

110. Moyer CL, Dobbs FC, Karl DM. 1995. Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl.

Environ. Microbiol. 61:1555–62

111. Muyzer G, Teske A, Wirsen CO, Jannasch HW. 1995. Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNAfragments. Arch. Microbiol. 164:165–72 112. Nicholas KB, Nicholas HB Jr, Deerfield DW II. 1997. Visualization of genetic variation.

Embnet. News 4:14

113. Paoli GC, Morgan NS, Tabita FR, Shively JM. 1995. Expression of the cbbLcbbS and cbbM genes and distinct organization of the cbb Calvin cycle structural genes of Rhodobacter capsulatus. Arch. Microbiol. 164:396–405

114. Paoli GC, Soyer F, Shively J, Tabita FR. 1997. Rhodobacter capsulatus genes encoding form I ribulose-1,5-bisphosphate carboxylase/oxygenase (cbbLS) and neighbouring genes were acquired by a horizontal gene transfer. Microbiology 144:219–27

115. Peters KR. 1974. Charakteriserung eines Phagenahnlichen Partikels aus Zellen von Nitrobacter. II. Struktur und Grosse. Arch. Microbiol. 97:129–40

116. Polz MF, Cavanaugh CM. 1995. Dominance of one bacterial phylotype at a Mid-Atlantic Ridge hydrothermal vent site. Proc. Natl. Acad. Sci. USA 92:7232–36

117. Polz MF, Distel DL, Zarda B, Amann R, Felbeck H, et al. 1994. Phylogenetic analysis of a highly specific association between ectosymbiotic, sulfur-oxidizing bacteria and a marine nematode. Appl. Environ. Microbiol. 60:4461–67

118. Price GD, Badger MR. 1989. Isolation and characterization of high CO2–requiring mutants of the cyanobacterium Synechococcus PCC 7942: two phenotypes that accumulate inorganic carbon but are apparently unable to generate CO2 within the carboxysome. Plant Physiol.

91:514–25

119. Price GD, Badger MR. 1991. Evidence for the role of carboxysomes in the cyanobacterial CO2-concentrating mechanism. Can. J. Bot. 69:963–73

120. Price GD, Coleman JR, Badger MR. 1992. Association of carbonic anhydrase activity with carboxysomes isolated from the cyanobacterium Synechococcus PCC7942. Plant Physiol.

100:784–93

121. Price GD,Howitt SM,Harrison K, Badger MR. 1993. Analysis of a genomic DNA region from the cyanobacterium Synechococcus sp. strain PCC7942 involved in carboxysome assembly and function. J. Bacteriol. 175:2871–79

122. Pronk JT, de Bruyn JC, Bos P, Kuenen JG. 1992. Anaerobic growth of Thiobacillus ferrooxidans. Appl. Environ. Microbiol. 58: 2227–30

123. Pulgar C, Gaete L, Allende J, Orellana O, Jordana X, et al. 1991. Isolation and nucleotide sequence of the Thiobacillus ferrooxidans genes for the small and large subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase. FEBS Lett. 292:85– 89

124. Purohit K, McFadden BA, Cohen AL. 1976. Purification, quaternary structure, composition, and properties of D-ribulose-1,5-bisphosphate carboxylase from Thiobacillus intermedius. J.

Bacteriol. 127:505–15

125. Qian Y, Tabita FR. 1996. A global signal transduction system regulates aerobic and anaerobic CO2 fixation in Rhodobacter sphaeroides. J. Bacteriol. 178:12–18

126. Read BA, Tabita FR. 1992. A hybrid ribulose bisphosphate carboxylase/oxygenase enzyme exhibiting a substantial increase in substrate specificity factor. Biochemistry 31:5553–60 127. Read BA, Tabita FR. 1992. Amino acid substitutions in the small subunit of

ribulose-1,5-bisphosphate carboxylase/oxygenase that influence catalytic activity of the holoenzyme.

Biochemistry 31:519–25

128. Read BA, Tabita FR. 1994. High substrate specificity factor ribulose bisphosphate carboxylase/oxygenase from eukaryotic marine algal and properties of recombinant cyanobacterial rubisco containing “algal” residue modifications. Arch. Biochem. Biophys.

312:210–18

129. Reinhold L, Kosloff R, Kaplan A. 1991. A model for inorganic carbon fluxes and photosynthesis in cyanobacterial carboxysomes. Can. J. Bot. 69:984–88

130. Reutz I, Schobert P, Bowien B. 1982. Effect of phosphoglycerate mutase deficiency on heterotrophic and autotrophic carbon metabolism of Alcaligenes eutrophus. J. Bacteriol.

151:8–15

131. Richardson DJ, King GF, Kelly DJ, McEwan AG, Ferguson SJ, et al. 1988. The role of auxiliary oxidants in maintaining redox balance during phototrophic growth of Rhodobacter capsulatus on propionate or butyrate. Arch. Microbiol. 150:131–37

132. Rindt KP, Ohmann E. 1969. NADH and AMP as allosteric effectors of ribulose-5-phosphate kinase in Rhodopseudomonas sphaeroides. Biochem. Biophys. Res. Commun. 36:357–64 133. Rippel S, Bowien B. 1984. Phosphoribulokinase from Rhodopseudomonas acidophila. Arch.

Microbiol. 139:207–12

134. Ronen-Tarazi M, Lieman-Hurwitz J, Gabay C, Orus MI, Kaplan A. 1995. The genomic region of rbcLS in Synechococcus sp. PCC7942 contains genes involved in the ability to grow

134. Ronen-Tarazi M, Lieman-Hurwitz J, Gabay C, Orus MI, Kaplan A. 1995. The genomic region of rbcLS in Synechococcus sp. PCC7942 contains genes involved in the ability to grow